Patents by Inventor Alan Sliski
Alan Sliski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20180104513Abstract: An integrated system for radiation therapy that includes a synchrotron ion accelerator beam delivery system, and imaging system on the same compact rotating gantry is disclosed. An ion accelerator, accelerating charged particles, is mounted on an annular gantry that rotates about the patient to be treated. The charged particles may be protons or other heavier ions such as helium or carbon. The beam delivery system, which includes bending, focusing, and scanning magnets and other equipment for accurately delivering the ion beam to the patient, is integrated on the same rotating structure. An imaging system which in one embodiment is, but not limited to, a cone beam CT system. The accelerator and imaging system may be configured in a coplanar or non-coplanar arrangement with the rotation plane of the gantry and with the beam delivery system to allow for optimization of the size or functionality of the system.Type: ApplicationFiled: October 14, 2016Publication date: April 19, 2018Inventor: Alan Sliski
-
Patent number: 8952634Abstract: A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions.Type: GrantFiled: October 22, 2009Date of Patent: February 10, 2015Assignee: Mevion Medical Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Patent number: 8483354Abstract: A patient support system for diagnostic and/or therapeutic radiologic procedures with geometric features that eliminate or reduce imaging artifacts created by the patient support is described. The artifact reducing features can be incorporated into an add-on patient positioning device, or directly within the standard diagnostic and/or therapeutic treatment table/couch. One possible configuration is to use a wave-like design of the portion of the patient support that remains in the radiation beam path where the anatomy to be imaged is located. Other configurations may include other geometric shapes or material distributions that serve the same purpose of eliminating artifacts in radiologic images.Type: GrantFiled: February 27, 2011Date of Patent: July 9, 2013Assignee: Orbital Therapy LLCInventors: Jason Kosnitsky, Alan Sliski
-
Patent number: 8466635Abstract: A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions.Type: GrantFiled: October 22, 2009Date of Patent: June 18, 2013Assignee: Mevion Medical Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Publication number: 20130127375Abstract: A synchrocyclotron includes a resonant circuit that includes electrodes having a gap there between across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator.Type: ApplicationFiled: September 14, 2012Publication date: May 23, 2013Inventors: Alan Sliski, Kenneth Gall
-
Publication number: 20130131424Abstract: Interposing a programmable path length of one or more materials into a particle beam modulates scattering angle and beam range in a predetermined manner to create a predetermined spread out Bragg peak at a predetermined range. Materials can be “low Z” and “high Z” materials that include fluids. A “high Z” and, independently, a “low Z” reservoir, arranged in series, can be used.Type: ApplicationFiled: September 14, 2012Publication date: May 23, 2013Inventors: Alan Sliski, Kenneth Gall
-
Patent number: 8111024Abstract: A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions.Type: GrantFiled: October 22, 2009Date of Patent: February 7, 2012Assignee: Mevion Medical Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Publication number: 20110306863Abstract: A patient alignment system for diagnostic and therapeutic procedures where the embodiment is mounted or referenced to the patient positioning interface such as add-on positioning devices, or directly with the diagnostic and/or therapeutic treatment table or couch. Some patient and equipment positions can obstruct fixed wall or ceiling mounted lasers or an optical view of the anatomy being imaged or treated and patient set-up and alignment may become less accurate or not possible. The patient alignment system may use lasers, cameras or other optical means, ultrasound or RF transceiver technologies, or a combination of multiple technologies, and be mounted in positions, such as below the treatment table or couch and offer a solution to patient alignment for such circumstances. Prone breast imaging and treatment is one example where this system may be used to advantage.Type: ApplicationFiled: June 15, 2010Publication date: December 15, 2011Inventors: Jason Koshnitsky, Alan Sliski
-
Publication number: 20100308235Abstract: Interposing a programmable path length of one or more materials into a particle beam modulates scattering angle and beam range in a predetermined manner to create a predetermined spread out Bragg peak at a predetermined range. Materials can be “low Z” and “high Z” materials that include fluids. A charged particle beam scatterer/range modulator can comprise a fluid reservoir having opposing walls in a particle beam path and a drive to adjust the distance between the walls of the fluid reservoir under control by a programmable controller. A “high Z” and, independently, a “low Z” reservoir, arranged in series, can be used. When used for radiation treatment, the beam can be monitored by measuring beam intensity, and the programmable controller can adjust the distance between the opposing walls of the “high Z” reservoir and, independently, the distance between the opposing walls of the “low Z” reservoir according to a predetermined relationship to integral beam intensity.Type: ApplicationFiled: May 6, 2010Publication date: December 9, 2010Applicant: Still River Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Patent number: 7718982Abstract: Interposing a programmable path length of one or more materials into a particle beam modulates scattering angle and beam range in a predetermined manner to create a predetermined spread out Bragg peak at a predetermined range. Materials can be “low Z” and “high Z” materials that include fluids. A charged particle beam scatterer/range modulator can comprise a fluid reservoir having opposing walls in a particle beam path and a drive to adjust the distance between the walls of the fluid reservoir under control by a programmable controller. A “high Z” and, independently, a “low Z” reservoir, arranged in series, can be used. When used for radiation treatment, the beam can be monitored by measuring beam intensity, and the programmable controller can adjust the distance between the opposing walls of the “high Z” reservoir and, independently, the distance between the opposing walls of the “low Z” reservoir according to a predetermined relationship to integral beam intensity.Type: GrantFiled: March 14, 2007Date of Patent: May 18, 2010Assignee: Still River Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Publication number: 20100045213Abstract: A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions.Type: ApplicationFiled: October 22, 2009Publication date: February 25, 2010Applicant: Still River Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Patent number: 7626347Abstract: A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions.Type: GrantFiled: January 25, 2008Date of Patent: December 1, 2009Assignee: Still River Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Patent number: 7569952Abstract: An inductive energy harvester comprises a permanent magnet magnetic field source attached by a pair of compact spiral disk springs to an induction coil. The springs position the magnet so that the induction coil surrounds one end of the magnet where the flux density is greatest. In addition, the magnetic flux emerging from that end of the magnet is enhanced by a disk of magnetic material having high permeability and high flux density. In another embodiment, the magnetic field source comprises two dipole magnets arranged in opposing flux relationship with a thin layer of high flux density, high magnetic permeability material located in a gap between the magnets.Type: GrantFiled: April 16, 2004Date of Patent: August 4, 2009Assignee: Ferro Solutions, Inc.Inventors: David C. Bono, Alan Sliski, Jiankang Huang, Robert C. O'Handley
-
Patent number: 7526066Abstract: A radiation therapy system optimized for treating extremities such as the breast has unique geometrical features that enable the system to deliver an accurately located prescribed dose to a target volume while eliminating or reducing the collateral dose delivered to the rest of the patient. The patient lies in a prone position on a rotating, shielded table, with the anatomy to be treated protruding through an orifice in the table into the path of a radiation beam. An optional integral imaging system provides accurate target volume localization for each treatment session. Utilizing the effects of gravity on a prone patient maximizes the separation of a target volume within the breast to adjacent critical structures such as the chest wall, heart and lungs, thereby reducing long term complications not associated with the primary disease. A shielded interface surface between the radiation source and the patient reduces patient dose due to scattered or stray radiation.Type: GrantFiled: September 8, 2006Date of Patent: April 28, 2009Assignee: Orbital Therapy, LLCInventors: Jason Koshnitsky, Alan Sliski
-
Publication number: 20080218102Abstract: A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions.Type: ApplicationFiled: January 25, 2008Publication date: September 11, 2008Inventors: Alan Sliski, Kenneth Gall
-
Patent number: 7402963Abstract: A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions.Type: GrantFiled: March 9, 2006Date of Patent: July 22, 2008Assignee: Still River Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Publication number: 20070235664Abstract: Interposing a programmable path length of one or more materials into a particle beam modulates scattering angle and beam range in a predetermined manner to create a predetermined spread out Bragg peak at a predetermined range. Materials can be “low Z” and “high Z” materials that include fluids. A charged particle beam scatterer/range modulator can comprise a fluid reservoir having opposing walls in a particle beam path and a drive to adjust the distance between the walls of the fluid reservoir under control by a programmable controller. A “high Z” and, independently, a “low Z” reservoir, arranged in series, can be used. When used for radiation treatment, the beam can be monitored by measuring beam intensity, and the programmable controller can adjust the distance between the opposing walls of the “high Z” reservoir and, independently, the distance between the opposing walls of the “low Z” reservoir according to a predetermined relationship to integral beam intensity.Type: ApplicationFiled: March 14, 2007Publication date: October 11, 2007Applicant: Still River Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Publication number: 20070211854Abstract: A radiation therapy system optimized for treating extremities such as the breast has unique geometrical features that enable the system to deliver an accurately located prescribed dose to a target volume while eliminating or reducing the collateral dose delivered to the rest of the patient. An optional integral imaging system provides accurate target volume localization for each treatment session. Utilizing the effects of gravity on a prone patient maximizes the separation of a target volume within the breast to adjacent critical structures such as the chest wall, heart and lungs, thereby reducing long term complications not associated with the primary disease. A shielded interface surface between the radiation source and the patient reduces patient dose due to scattered or stray radiation.Type: ApplicationFiled: September 8, 2006Publication date: September 13, 2007Inventors: Jason Koshnitsky, Alan Sliski
-
Patent number: 7208748Abstract: Interposing a programmable path length of one or more materials into a particle beam modulates scattering angle and beam range in a predetermined manner to create a predetermined spread out Bragg peak at a predetermined range. Materials can be “low Z” and “high Z” materials that include fluids. A charged particle beam scatterer/range modulator can comprise a fluid reservoir having opposing walls in a particle beam path and a drive to adjust the distance between the walls of the fluid reservoir under control by a programmable controller. A “high Z” and, independently, a “low Z” reservoir, arranged in series, can be used. When used for radiation treatment, the beam can be monitored by measuring beam intensity, and the programmable controller can adjust the distance between the opposing walls of the “high Z” reservoir and, independently, the distance between the opposing walls of the “low Z” reservoir according to a predetermined relationship to integral beam intensity.Type: GrantFiled: September 24, 2004Date of Patent: April 24, 2007Assignee: Still River Systems, Inc.Inventors: Alan Sliski, Kenneth Gall
-
Patent number: RE48047Abstract: A synchrocyclotron comprises includes a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or and/or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions.Type: GrantFiled: February 9, 2017Date of Patent: June 9, 2020Assignee: Mevion Medical Systems, Inc.Inventors: Alan Sliski, Kenneth Gall