Patents by Inventor Albert W. Wegener

Albert W. Wegener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130007076
    Abstract: Compression of floating-point numbers is realized by comparing the exponents of the floating-point numbers to one or more exponent thresholds to classify the floating-point numbers and to apply different compression types to the different classes. Each class and compression type is associated with an indicator. An indicator array contains M indicators for M floating-point numbers. The position of the indicator in the indicator array corresponds to one of the floating-point numbers and the indicator value specifies the class and compression type. The floating-point number is encoded in accordance with the compression type for its class. A compressed data packet contains the indicator array and up to M encoded floating-point numbers.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 3, 2013
    Applicant: SAMPLIFY SYSTEMS, INC.
    Inventor: Albert W. Wegener
  • Publication number: 20130007077
    Abstract: Compression of exponents, mantissas and signs of floating-point numbers is described. Differences between exponents are encoded by exponent tokens selected from a code table. The mantissa is encoded to a mantissa token having a length based on the exponent. The signs are encoded directly or are compressed to produce fewer sign tokens. The exponent tokens, mantissa tokens and sign tokens are packed in a compressed data packet. Decompression decodes the exponent tokens using the code table. The decoded exponent difference is added to a previous reconstructed exponent to produce the reconstructed exponent. The reconstructed exponent is used to determine the length of the mantissa token. The mantissa token is decoded to form the reconstructed mantissa. The sign tokens provide the reconstructed signs or are decompressed to provide the reconstructed signs. The reconstructed sign, reconstructed exponent and reconstructed mantissa are combined to form a reconstructed floating-point number.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 3, 2013
    Applicant: Samplify Systems, Inc.
    Inventor: ALBERT W. WEGENER
  • Publication number: 20130007078
    Abstract: Exponents, mantissas and signs of floating-point numbers are compressed in encoding groups. Differences between maximum exponents of encoding groups are encoded by exponent tokens selected from a code table. Each mantissa of an encoding group is encoded to a mantissa token having a length based on the maximum exponent. Signs are encoded directly or are compressed to produce sign tokens. Exponent tokens, mantissa tokens and sign tokens are packed in a compressed data packet. For decompression, the exponent tokens are decoded using the code table. The decoded exponent difference is added to a previous reconstructed maximum exponent to produce the reconstructed maximum exponent for the encoding group. The reconstructed maximum exponent is used to determine the length of the mantissa tokens that are decoded to produce the reconstructed mantissas for the encoding group. The reconstructed sign, reconstructed exponent and reconstructed mantissa are combined to form a reconstructed floating-point number.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 3, 2013
    Applicant: SAMPLIFY SYSTEMS, INC.
    Inventor: ALBERT W. WEGENER
  • Patent number: 8331461
    Abstract: A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses baseband signal samples resulting from analog to digital conversion of a received analog signal followed by digital downconversion. The compressed signal samples are transferred over the serial data link to the baseband processor then decompressed prior to normal signal processing. For the downlink, the baseband processor compresses baseband signal samples and transfers the compressed signal samples to the RF unit. The RF unit decompresses the compressed samples prior to digital upconversion and digital to analog conversion to form an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems, including OBSAI or CPRI compliant systems.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 11, 2012
    Assignee: Integrated Device Technology, Inc
    Inventor: Albert W. Wegener
  • Patent number: 8320433
    Abstract: A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses baseband signal samples resulting from analog to digital conversion of a received analog signal followed by digital downconversion. The compressed signal samples are transferred over the serial data link to the baseband processor then decompressed prior to normal signal processing. For the downlink, the baseband processor compresses baseband signal samples and transfers the compressed signal samples to the RF unit. The RF unit decompresses the compressed samples prior to digital upconversion and digital to analog conversion to form an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems, including OBSAI or CPRI compliant systems.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: November 27, 2012
    Assignee: Integrated Device Technology Inc.
    Inventor: Albert W. Wegener
  • Patent number: 8317706
    Abstract: In an ultrasound imaging system that applies a beamformer to received ultrasound signal samples to form one or more beams represented by arrays of beamformed samples, a method and an apparatus compress each array of beamformed samples independently of the other arrays to form compressed beams. A plurality of analog to digital converters sample multiple analog ultrasound signals produced by a transducer array to provide multiple streams of ultrasound signal samples to the beamformer. The compressed beams are transferred via a digital interface to a signal processor. At the signal processor, the compressed beams are decompressed to form decompressed beams. The signal processor further processes the decompressed beams for diagnostic imaging, such as for B-mode and Doppler imaging, and scan conversion to prepare the resulting ultrasound image for display. This abstract does not limit the scope of the invention as described in the claims.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: November 27, 2012
    Assignee: White Eagle Sonic Technologies, Inc.
    Inventor: Albert W. Wegener
  • Patent number: 8301803
    Abstract: A method and apparatus for compressing signal samples uses block floating point representations where the number of bits per mantissa is determined by the maximum magnitude sample in the group. The compressor defines groups of signal samples having a fixed number of samples per group. The maximum magnitude sample in the group determines an exponent value corresponding to the number of bits for representing the maximum sample value. The exponent values are encoded to form exponent tokens. Exponent differences between consecutive exponent values may be encoded individually or jointly. The samples in the group are mapped to corresponding mantissas, each mantissa having a number of bits based on the exponent value. Removing LSBs depending on the exponent value produces mantissas having fewer bits. Feedback control monitors the compressed bit rate and/or a quality metric. This abstract does not limit the scope of the invention as described in the claims.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: October 30, 2012
    Assignee: Samplify Systems, Inc.
    Inventor: Albert W. Wegener
  • Publication number: 20120157852
    Abstract: A method and an apparatus for an ultrasound system provide compression of ultrasound signal samples after analog to digital conversion and before beamforming. The analog ultrasound signals received from an array of ultrasound transducer elements are digitally sampled by a plurality of analog to digital converters (ADCs) to produce a plurality of sequences of signal samples. Each sequence of signal samples is compressed to form a corresponding sequence of compressed samples. The resulting sequences of compressed samples are transferred via a digital interface to an ultrasound signal processor. At the ultrasound signal processor, the received sequences of compressed samples are decompressed. The typical processing operations, such as beamforming, downconversion and detection, are applied to decompressed samples. This abstract does not limit the scope of the invention as described in the claims.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 21, 2012
    Applicant: SAMPLIFY SYSTEMS, INC.
    Inventors: Albert W. Wegener, Michael V. Nanevicz
  • Patent number: 8174428
    Abstract: A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses signal samples resulting from analog to digital conversion of an analog signal received via an antenna. The RF unit transfers the compressed signal samples over the serial data link to the base station processor where they are decompressed prior to the normal signal processing operations. For the downlink, the base station processor compresses signal samples and transfers the compressed signal samples over the serial data link to the RF unit. The RF unit decompresses the compressed samples and converts the decompressed samples to an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: May 8, 2012
    Assignee: Integrated Device Technology, Inc.
    Inventor: Albert W Wegener
  • Patent number: 8157738
    Abstract: A method and an apparatus for an ultrasound system provide compression of ultrasound signal samples after analog to digital conversion and before beamforming. The analog ultrasound signals received from an array of ultrasound transducer elements are digitally sampled by a plurality of analog to digital converters (ADCs) to produce a plurality of sequences of signal samples. Each sequence of signal samples is compressed to form a corresponding sequence of compressed samples. The resulting sequences of compressed samples are transferred via a digital interface to an ultrasound signal processor. At the ultrasound signal processor, the received sequences of compressed samples are decompressed. The typical processing operations, such as beamforming, downconversion and detection, are applied to decompressed samples. This abstract does not limit the scope of the invention as described in the claims.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: April 17, 2012
    Assignee: Samplify Systems, Inc.
    Inventors: Albert W. Wegener, Michael V Nanevicz
  • Patent number: 8151022
    Abstract: A method and apparatus compress projection data and store the compressed projection data in a rotatable part that is mounted for rotation within a stationary part. The data acquisition source, compressor and storage device are connected to the rotatable part. The compressor compresses projection data samples provided by the data acquisition source to form compressed packets. The compressed packets are stored in the storage device, for example one or more solid state drives mounted on the rotatable part. A data access array contains information related to the location of the stored compressed packets. Compressed packets are retrieved and transferred across the interface to the stationary part. A decompressor at the stationary part decompresses the received compressed packets to form decompressed samples of the corresponding projection data. This abstract does not limit the scope of the invention as described in the claims.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: April 3, 2012
    Assignee: Simplify Systems, Inc.
    Inventors: Albert W. Wegener, Carl R. Crawford, Yi Ling
  • Publication number: 20120057572
    Abstract: In a distributed antenna system (DAS) and a local area network (LAN), a common communication infrastructure distributes data from radio-based and Internet-based sources. A radio equipment (RE) of the DAS interfaces to a LAN segment. For the downlink, a gateway maps radio signal data from a radio equipment controller (REC) and data packets from a switch to mixed-data frames using a radio data interface protocol for transmission in the DAS. At the RE, the signal data and data packets are retrieved from the mixed-data frames and provided to the air interface and LAN segment, respectively. For the uplink from the RE, the radio signal data from the air interface and the data packets from the LAN segment are mapped to mixed-data frames and transmitted to the gateway. The gateway retrieves the signal samples and data packets from the mixed-data frames for transfer to the REC and switch, respectively.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 8, 2012
    Applicant: Samplify Systems, Inc.
    Inventors: Allan M. Evans, Albert W. Wegener
  • Publication number: 20120014421
    Abstract: A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses baseband signal samples resulting from analog to digital conversion of a received analog signal followed by digital downconversion. The compressed signal samples are transferred over the serial data link to the baseband processor then decompressed prior to normal signal processing. For the downlink, the baseband processor compresses baseband signal samples and transfers the compressed signal samples to the RF unit. The RF unit decompresses the compressed samples prior to digital upconversion and digital to analog conversion to form an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems, including OBSAI or CPRI compliant systems.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 19, 2012
    Applicant: Samplify Systems, Inc.
    Inventor: ALBERT W. WEGENER
  • Publication number: 20120014422
    Abstract: A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses baseband signal samples resulting from analog to digital conversion of a received analog signal followed by digital downconversion. The compressed signal samples are transferred over the serial data link to the baseband processor then decompressed prior to normal signal processing. For the downlink, the baseband processor compresses baseband signal samples and transfers the compressed signal samples to the RF unit. The RF unit decompresses the compressed samples prior to digital upconversion and digital to analog conversion to form an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems, including OBSAI or CPRI compliant systems.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 19, 2012
    Applicant: Samplify Systems, Inc.
    Inventor: Albert W. WEGENER
  • Publication number: 20120008696
    Abstract: A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses baseband signal samples resulting from analog to digital conversion of a received analog signal followed by digital downconversion. The compressed signal samples are transferred over the serial data link to the baseband processor then decompressed prior to normal signal processing. For the downlink, the baseband processor compresses baseband signal samples and transfers the compressed signal samples to the RF unit. The RF unit decompresses the compressed samples prior to digital upconversion and digital to analog conversion to form an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems, including OBSAI or CPRI compliant systems.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 12, 2012
    Applicant: Samplify Systems, Inc.
    Inventor: ALBERT W. WEGENER
  • Publication number: 20110280209
    Abstract: A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses baseband signal samples resulting from analog to digital conversion of a received analog signal followed by digital downconversion. The compressed signal samples are transferred over the serial data link to the baseband processor then decompressed prior to normal signal processing. For the downlink, the baseband processor compresses baseband signal samples and transfers the compressed signal samples to the RF unit. The RF unit decompresses the compressed samples prior to digital upconversion and digital to analog conversion to form an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems, including OBSAI or CPRI compliant systems.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 17, 2011
    Applicant: SAMPLIFY SYSTEMS, INC.
    Inventor: Albert W. Wegener
  • Patent number: 8045811
    Abstract: A computed tomography system has a stationary part, a rotatable part mounted for rotation around an object to be examined and an interface between the stationary part and the rotatable part. The rotatable part includes an x-ray source, a sensor array for detecting x-rays passing through the object to produce projection data samples, a compressor that compresses the projection data samples and a storage device that stores the compressed samples. The storage device on the rotatable part can include one or more solid state drives. For image reconstruction, the compressed samples are retrieved from the storage device, transferred across the interface to the stationary part. A decompressor at the stationary part decompresses the received compressed samples and provides decompressed samples to the image reconstruction processor. This abstract does not limit the scope of the invention as described in the claims.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: October 25, 2011
    Assignee: Samplify Systems, Inc.
    Inventors: Albert W. Wegener, Carl R. Crawford, Yi Ling
  • Patent number: 8005152
    Abstract: A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses baseband signal samples resulting from analog to digital conversion of a received analog signal followed by digital downconversion. The compressed signal samples are transferred over the serial data link to the baseband processor then decompressed prior to normal signal processing. For the downlink, the baseband processor compresses baseband signal samples and transfers the compressed signal samples to the RF unit. The RF unit decompresses the compressed samples prior to digital upconversion and digital to analog conversion to form an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems, including OBSAI or CPRI compliant systems.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: August 23, 2011
    Assignee: Samplify Systems, Inc.
    Inventor: Albert W Wegener
  • Publication number: 20110135013
    Abstract: A signal compression method and apparatus for a base transceiver system (BTS) in a wireless communication network provides efficient transfer of compressed signal samples over serial data links in the system. For the uplink, an RF unit of the BTS compresses baseband signal samples resulting from analog to digital conversion of a received analog signal followed by digital downconversion. The compressed signal samples are transferred over the serial data link to the baseband processor then decompressed prior to normal signal processing. For the downlink, the baseband processor compresses baseband signal samples and transfers the compressed signal samples to the RF unit. The RF unit decompresses the compressed samples prior to digital upconversion and digital to analog conversion to form an analog signal for transmission over an antenna. Compression and decompression can be incorporated into operations of conventional base stations and distributed antenna systems, including OBSAI or CPRI compliant systems.
    Type: Application
    Filed: May 21, 2008
    Publication date: June 9, 2011
    Applicant: SAMPLIFY SYSTEMS, INC.
    Inventor: Albert W. Wegener
  • Publication number: 20110099295
    Abstract: A method and apparatus for compressing signal samples uses block floating point representations where the number of bits per mantissa is determined by the maximum magnitude sample in the group. The compressor defines groups of signal samples having a fixed number of samples per group. The maximum magnitude sample in the group determines an exponent value corresponding to the number of bits for representing the maximum sample value. The exponent values are encoded to form exponent tokens. Exponent differences between consecutive exponent values may be encoded individually or jointly. The samples in the group are mapped to corresponding mantissas, each mantissa having a number of bits based on the exponent value. Removing LSBs depending on the exponent value produces mantissas having fewer bits. Feedback control monitors the compressed bit rate and/or a quality metric. This abstract does not limit the scope of the invention as described in the claims.
    Type: Application
    Filed: October 23, 2009
    Publication date: April 28, 2011
    Applicant: Samplify Systems, Inc.
    Inventor: ALBERT W. WEGENER