Patents by Inventor Albrecht Ehrmann

Albrecht Ehrmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11441970
    Abstract: A measurement apparatus (10) for measuring a wavefront aberration of an imaging optical system (12) includes (i) a measurement wave generating module (24) which generates a measurement wave (26) radiated onto the optical system and which includes an illumination system (30) illuminating a mask plane (14) with an illumination radiation (32), as well as coherence structures (36) arranged in the mask plane, and (ii) a wavefront measurement module (28) which measures the measurement wave after passing through the optical system and determines from the measurement result, with an evaluation device (46), a deviation of the wavefront of the measurement wave from a desired wavefront. The evaluation device (46) determines an influence of an intensity distribution (70) of the illumination radiation in the region of the mask plane on the measurement result and, when determining the deviation of the wavefront, utilizes the influence of the intensity distribution.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: September 13, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Albrecht Ehrmann, Helmut Haidner, Michael Samaniego
  • Publication number: 20200003655
    Abstract: A measurement apparatus (10) for measuring a wavefront aberration of an imaging optical system (12) includes (i) a measurement wave generating module (24) which generates a measurement wave (26) radiated onto the optical system and which includes an illumination system (30) illuminating a mask plane (14) with an illumination radiation (32), as well as coherence structures (36) arranged in the mask plane, and (ii) a wavefront measurement module (28) which measures the measurement wave after passing through the optical system and determines from the measurement result, with an evaluation device (46), a deviation of the wavefront of the measurement wave from a desired wavefront. The evaluation device (46) determines an influence of an intensity distribution (70) of the illumination radiation in the region of the mask plane on the measurement result and, when determining the deviation of the wavefront, utilizes the influence of the intensity distribution.
    Type: Application
    Filed: August 30, 2019
    Publication date: January 2, 2020
    Inventors: Albrecht EHRMANN, Helmut HAIDNER, Michael SAMANIEGO
  • Patent number: 10345710
    Abstract: A microlithographic projection exposure apparatus includes a projection lens that is configured for immersion operation. For this purpose an immersion liquid is introduced into an immersion space that is located between a last lens of the projection lens on the image side and a photosensitive layer to be exposed. To reduce fluctuations of refractive index resulting from temperature gradients occurring within the immersion liquid, the projection exposure apparatus includes heat transfer elements that heat or cool partial volumes of the immersion liquid so as to achieve an at least substantially homogenous or at least substantially rotationally symmetric temperature distribution within the immersion liquid.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: July 9, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Albrecht Ehrmann, Ulrich Wegmann, Rainer Hoch, Joerg Mallmann, Karl-Heinz Schuster, Ulrich Loering, Toralf Gruner, Bernhard Kneer, Bernhard Geuppert, Franz Sorg, Jens Kugler, Norbert Wabra
  • Patent number: 10006807
    Abstract: An apparatus (10) determining an optical property of an imaging system (12) includes an illumination system (20) directing electromagnetic radiation (18) onto an object plane (22) of the imaging system, a utilization detector (42) determining the optical property, an output coupling device (46), and an intensity sensor (50). The detector captures the radiation after it has traveled along a utilized beam path (45) extending to the utilization detector. The output coupling device couples sensor radiation (48) out of the utilized beam path and into a sensor beam path (49) that differs from the utilized beam path. The intensity sensor records an angularly resolved intensity distribution present at least at one point in the object plane of the optical imaging system, which intensity distribution reproduces the intensity of the electromagnetic radiation in dependence on the angle of incidence with respect to the object plane.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: June 26, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Albrecht Ehrmann, Markus Goeppert, Helmut Haidner
  • Publication number: 20170082930
    Abstract: A microlithographic projection exposure apparatus includes a projection lens that is configured for immersion operation. For this purpose an immersion liquid is introduced into an immersion space that is located between a last lens of the projection lens on the image side and a photosensitive layer to be exposed. To reduce fluctuations of refractive index resulting from temperature gradients occurring within the immersion liquid, the projection exposure apparatus includes heat transfer elements that heat or cool partial volumes of the immersion liquid so as to achieve an at least substantially homogenous or at least substantially rotationally symmetric temperature distribution within the immersion liquid.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 23, 2017
    Inventors: Albrecht Ehrmann, Ulrich Wegmann, Rainer Hoch, Joerg Mallmann, Karl-Heinz Schuster, Ulrich Loering, Toralf Gruner, Bernhard Kneer, Bernhard Geuppert, Franz Sorg, Jens Kugler, Norbert Wabra
  • Patent number: 9436095
    Abstract: A microlithographic projection exposure apparatus includes a projection lens that is configured for immersion operation. For this purpose an immersion liquid is introduced into an immersion space that is located between a last lens of the projection lens on the image side and a photosensitive layer to be exposed. To reduce fluctuations of refractive index resulting from temperature gradients occurring within the immersion liquid, the projection exposure apparatus includes heat transfer elements that heat or cool partial volumes of the immersion liquid so as to achieve an at least substantially homogenous or at least substantially rotationally symmetric temperature distribution within the immersion liquid.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: September 6, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Albrecht Ehrmann, Ulrich Wegmann, Rainer Hoch, Joerg Mallmann, Karl-Heinz Schuster, Ulrich Loering, Toralf Gruner, Bernhard Kneer, Bernhard Geuppert, Franz Sorg, Jens Kugler, Norbert Wabra
  • Patent number: 9429495
    Abstract: Methods for measuring the image quality of a projection objective include providing a measuring structure on an image-side of the projection objective, providing an immersion fluid between the projection objective and the measuring structure, directing light through the projection objective and the immersion fluid to the measuring structure while shielding the measuring structure from the immersion fluid, detecting light transmitted by the measuring structure, and determining an image quality of the projection objective based on the detected light.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: August 30, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Publication number: 20160202118
    Abstract: An apparatus (10) determining an optical property of an imaging system (12) includes an illumination system (20) directing electromagnetic radiation (18) onto an object plane (22) of the imaging system, a utilization detector (42) determining the optical property, an output coupling device (46), and an intensity sensor (50). The detector captures the radiation after it has traveled along a utilized beam path (45) extending to the utilization detector. The output coupling device couples sensor radiation (48) out of the utilized beam path and into a sensor beam path (49) that differs from the utilized beam path. The intensity sensor records an angularly resolved intensity distribution present at least at one point in the object plane of the optical imaging system, which intensity distribution reproduces the intensity of the electromagnetic radiation in dependence on the angle of incidence with respect to the object plane.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Albrecht EHRMANN, Markus GOEPPERT, Helmut HAIDNER
  • Publication number: 20140347654
    Abstract: Methods for measuring the image quality of a projection objective include providing a measuring structure on an image-side of the projection objective, providing an immersion fluid between the projection objective and the measuring structure, directing light through the projection objective and the immersion fluid to the measuring structure while shielding the measuring structure from the immersion fluid, detecting light transmitted by the measuring structure, and determining an image quality of the projection objective based on the detected light.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Patent number: 8836929
    Abstract: A device for the optical measurement of an optical system, in particular an optical imaging system, is provided. The device includes at least one test optics component arranged on an object side or an image side of the optical system. An immersion fluid is adjacent to at least one of the test optics components. A container for use in this device, a microlithography projection exposure machine equipped with this device, and a method which can be carried out with the aid of this device are also provided. The device and method provide for optical measurement of microlithography projection objectives with high numerical apertures by using wavefront detection with shearing or point diffraction interferometry, or a Moiré measuring technique.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ulrich Wegmann, Uwe Shellhorn, Joachim Stuehler, Albrecht Ehrmann, Martin Schriever, Markus Goeppert, Helmut Haidner
  • Patent number: 8823948
    Abstract: Methods for measuring the image quality of a projection objective include providing a measuring structure on an image-side of the projection objective, providing an immersion fluid between the projection objective and the measuring structure, directing light through the projection objective and the immersion fluid to the measuring structure while shielding the measuring structure from the immersion fluid, detecting light transmitted by the measuring structure, and determining an image quality of the projection objective based on the detected light.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: September 2, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Publication number: 20140022524
    Abstract: A device for the optical measurement of an optical system, in particular an optical imaging system, is provided. The device includes at least one test optics component arranged on an object side or an image side of the optical system. An immersion fluid is adjacent to at least one of the test optics components. A container for use in this device, a microlithography projection exposure machine equipped with this device, and a method which can be carried out with the aid of this device are also provided. The device and method provide for optical measurement of microlithography projection objectives with high numerical apertures by using wavefront detection with shearing or point diffraction interferometry, or a Moiré measuring technique.
    Type: Application
    Filed: December 13, 2012
    Publication date: January 23, 2014
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Ulrich Wegmann, Uwe Schellhorn, Joachim Stuehler, Albrecht Ehrmann, Martin Schriever, Markus Goeppert, Helmut Haidner
  • Publication number: 20130293869
    Abstract: Methods for measuring the image quality of a projection objective include providing a measuring structure on an image-side of the projection objective, providing an immersion fluid between the projection objective and the measuring structure, directing light through the projection objective and the immersion fluid to the measuring structure while shielding the measuring structure from the immersion fluid, detecting light transmitted by the measuring structure, and determining an image quality of the projection objective based on the detected light.
    Type: Application
    Filed: June 14, 2013
    Publication date: November 7, 2013
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Patent number: 8488127
    Abstract: A measuring system for the optical measurement of an optical imaging system, which is provided to image a pattern arranged in an object surface of the imaging system in an image surface of the imaging system, comprises an object-side structure carrier having an object-side measuring structure, to be arranged on the object side of the imaging system; an image-side structure carrier having an image-side measuring structure, to be arranged on the image side of the imaging system; the object-side measuring structure and the image-side measuring structure being matched to each other in such a way that, when the object-side measuring structure is imaged onto the image-side measuring structure with the aid of the imaging system, a superposition pattern is produced; and a detector for the locally resolving acquisition of the superposition pattern. The imaging system is designed as an immersion system for imaging with the aid of an immersion liquid.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: July 16, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Patent number: 8330935
    Abstract: A microlithographic projection exposure apparatus includes a projection lens that is configured for immersion operation. For this purpose an immersion liquid is introduced into an immersion space that is located between a last lens of the projection lens on the image side and a photosensitive layer to be exposed. To reduce fluctuations of refractive index resulting from temperature gradients occurring within the immersion liquid, the projection exposure apparatus includes heat transfer elements that heat or cool partial volumes of the immersion liquid so as to achieve an at least substantially homogenous or at least substantially rotationally symmetric temperature distribution within the immersion liquid.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: December 11, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Albrecht Ehrmann, Ulrich Wegmann, Rainer Hoch, Joerg Mallmann, Karl-Heinz Schuster, Ulrich Loering, Toralf Gruner, Bernhard Kneer, Bernhard Geuppert, Franz Sorg, Jens Kugler, Norbert Wabra
  • Patent number: 8212991
    Abstract: An optical system of a microlithographic projection exposure apparatus contains a module, which can be fitted in the optical system and removed from it as a unit. The module contains a cavity which can be completely filled with a liquid and hermetically sealed, and a concavely curved optical surface which bounds the cavity at the top during operation of the projection exposure apparatus. This makes it possible to fill the module outside the optical system. The module can be tilted there so that no air bubble, which prevents complete filling, can form below the concavely curved optical surface.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: July 3, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Albrecht Ehrmann, Sascha Bleidistel
  • Publication number: 20120113429
    Abstract: A device for the optical measurement of an optical system, in particular an optical imaging system, is provided. The device includes at least one test optics component arranged on an object side or an image side of the optical system. An immersion fluid is adjacent to at least one of the test optics components. A container for use in this device, a microlithography projection exposure machine equipped with this device, and a method which can be carried out with the aid of this device are also provided. The device and method provide for optical measurement of microlithography projection objectives with high numerical apertures by using wavefront detection with shearing or point diffraction interferometry, or a Moiré measuring technique.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 10, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Ulrich Wegmann, Uwe Schellhorn, Joachim Stuehler, Albrecht Ehrmann, Martin Schriever, Markus Goeppert, Helmut Haidner
  • Patent number: 8120763
    Abstract: A device for the optical measurement of an optical system, in particular an optical imaging system, is provided. The device includes at least one test optics component arranged on an object side or an image side of the optical system. An immersion fluid is adjacent to at least one of the test optics components. A container for use in this device, a microlithography projection exposure machine equipped with this device, and a method which can be carried out with the aid of this device are also provided. The device and method provide for optical measurement of microlithography projection objectives with high numerical apertures by using wavefront detection with shearing or point diffraction interferometry, or a Moiré measuring technique.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: February 21, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ulrich Wegmann, Uwe Schellhorn, Joachim Stuehler, Albrecht Ehrmann, Martin Schriever, Markus Goeppert, Helmut Haidner
  • Publication number: 20100315651
    Abstract: A measuring system for the optical measurement of an optical imaging system, which is provided to image a pattern arranged in an object surface of the imaging system in an image surface of the imaging system, comprises an object-side structure carrier having an object-side measuring structure, to be arranged on the object side of the imaging system; an image-side structure carrier having an image-side measuring structure, to be arranged on the image side of the imaging system; the object-side measuring structure and the image-side measuring structure being matched to each other in such a way that, when the object-side measuring structure is imaged onto the image-side measuring structure with the aid of the imaging system, a superposition pattern is produced; and a detector for the locally resolving acquisition of the superposition pattern. The imaging system is designed as an immersion system for imaging with the aid of an immersion liquid.
    Type: Application
    Filed: August 5, 2010
    Publication date: December 16, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Patent number: 7796274
    Abstract: A measuring system (100) for the optical measurement of an optical imaging system (150), which is provided to image a pattern arranged in an object surface (155) of the imaging system in an image surface (156) of the imaging system, comprises an object-side structure carrier (110) having an object-side measuring structure (111), to be arranged on the object side of the imaging system; an image-side structure carrier (120) having an image-side measuring structure (121), to be arranged on the image side of the imaging system; the object-side measuring structure and the image-side measuring structure being matched to each other in such a way that, when the object-side measuring structure is imaged onto the image-side measuring structure with the aid of the imaging system, a superposition pattern is produced; and a detector (130) for the locally resolving acquisition of the superposition pattern. The imaging system is designed as an immersion system for imaging with the aid of an immersion liquid (171).
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: September 14, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathussen