Patents by Inventor Aleksandar Aleksov

Aleksandar Aleksov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220084962
    Abstract: An electronic assembly, such as an integrated circuit package, may be formed comprising a package substrate, a plurality of integrated circuit devices electrically attached to the package substrate, wherein each integrated circuit device of the plurality of integrated circuit devices includes an active surface and a backside surface, and wherein a first integrated circuit device and a second integrated circuit device of the plurality of integrated circuit devices includes radio frequency logic circuitry and a radio frequency antenna formed in or attached thereto, and a radio frequency waveguide on the backside surface of the first integrated circuit device and on the backside surface of the second integrated circuit device.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Kristof Darmawikarta, Benjamin Duong, Telesphor Kamgaing, Miranda Ngan, Srinivas Pietambaram
  • Publication number: 20220084965
    Abstract: In-package radio frequency (RF) waveguides as high bandwidth chip-to-chip interconnects and methods for using the same are disclosed. In one example, an electronic package includes a package substrate, first and second silicon dies or tiles, and an RF waveguide. The first and second silicon dies or tiles are attached to the package substrate. The RF waveguide is formed in the package substrate and interconnects the first silicon die or tile with the second silicon die or tile.
    Type: Application
    Filed: November 16, 2021
    Publication date: March 17, 2022
    Inventors: Aleksandar ALEKSOV, Telesphor KAMGAING, Sri Ranga Sai BOYAPATI, Kristof DARMAWIKARTA, Eyal FAYNEH, Ofir DEGANI, David LEVY, Johanna M. SWAN
  • Publication number: 20220084931
    Abstract: A device package and a method of forming a device package are described. The device package includes an interposer with interconnects on an interconnect package layer and a conductive layer on the interposer. The device package has dies on the conductive layer, where the package layer includes a zero-misalignment two-via stack (ZM2VS) and a dielectric. The ZM2VS is directly coupled to the interconnect. The ZM2VS may further include the dielectric on a conductive pad, a first via on a first seed, and the first seed on a top surface of the conductive pad, where the first via extends through dielectric. The ZM2VS may also have a conductive trace on dielectric, and a second via on a second seed, the second seed is on the dielectric, where the conductive trace connects to first and second vias, where second via connects to an edge of conductive trace opposite from first via.
    Type: Application
    Filed: November 29, 2021
    Publication date: March 17, 2022
    Inventors: Veronica STRONG, Aleksandar ALEKSOV, Brandon RAWLINGS, Johanna SWAN
  • Patent number: 11264239
    Abstract: Techniques that can assist with fabricating a semiconductor package that includes a zero misalignment-via (ZMV) and/or a trace formed using a polarization process are described. The disclosed techniques can result in creation of ZMVs and/or traces between the ZMVs using a process comprising application of polarized light to one or more resist layers (e.g., a photoresist layer, etc.). One embodiment of a technique includes modulating an intensity of light applied to one or more resist layers by interaction of a light source with a photomask and at least one polarizer such that one or more patterns are created on the one or more resist layers. One embodiment of another technique includes creating patterns on one or more resist layers with different types of polarized light formed from a photomask and at least one polarizer. The disclosed techniques can assist with reducing manufacturing costs, reducing development time, and increasing I/O density.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Hiroki Tanaka, Aleksandar Aleksov, Sri Ranga Sai Boyapati, Robert A. May, Kristof Darmawikarta
  • Patent number: 11264307
    Abstract: Techniques that can assist with fabricating a package layer that includes a plurality of dual-damascene zero-misalignment-vias (dual-damascene ZMVs) and a trace between the dual-damascene ZMVs are described. The disclosed techniques allow for the dual-damascene ZMVs and their corresponding trace to be plated simultaneously in a single step or operation. As such, there is little or no misalignment between the dual-damascene ZMVs, the trace, and the metal pads connected to the ZMVs. In this way, one or more of the embodiments described herein can assist with reducing manufacturing costs, reducing development time of fabricating a package layer, and with increasing the I/O density in a semiconductor package.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Hiroki Tanaka, Robert A. May, Kristof Darmawikarta, Changhua Liu, Chung Kwang Tan, Srinivas Pietambaram, Sri Ranga Sai Boyapati
  • Patent number: 11264373
    Abstract: Embodiments may relate to a die with a front-end and a backend. The front-end may include a transistor. The backend may include a signal line, a conductive line, and a diode that is communicatively coupled with the signal line and the conductive line. Other embodiments may be described or claimed.
    Type: Grant
    Filed: December 21, 2019
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Adel A. Elsherbini, Feras Eid, Veronica Aleman Strong, Johanna M. Swan
  • Patent number: 11257745
    Abstract: A package substrate, comprising a package comprising a substrate, the substrate comprising a dielectric layer, a via extending to a top surface of the dielectric layer; and a bond pad stack having a central axis and extending laterally from the via over the first layer. The bond pad stack is structurally integral with the via, wherein the bond pad stack comprises a first layer comprising a first metal disposed on the top of the via and extends laterally from the top of the via over the top surface of the dielectric layer adjacent to the via. The first layer is bonded to the top of the via and the dielectric layer, and a second layer is disposed over the first layer. A third layer is disposed over the second layer. The second layer comprises a second metal and the third layer comprises a third metal. The second layer and the third layer are electrically coupled to the via.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: February 22, 2022
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Veronica Strong, Kristof Darmawikarta, Arnab Sarkar
  • Patent number: 11244912
    Abstract: Semiconductor packages having a first layer interconnect portion that includes a coaxial interconnect between a die and a package substrate are described. In an example, the package substrate includes a substrate-side coaxial interconnect electrically connected to a signal line. The die is mounted on the package substrate and includes a die-side coaxial interconnect coupled to the substrate-side coaxial interconnect. The coaxial interconnects can be joined by a solder bond between respective central conductors and shield conductors.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 8, 2022
    Assignee: Intel Corporation
    Inventors: Sai Vadlamani, Aleksandar Aleksov, Rahul Jain, Kyu Oh Lee, Kristof Kuwawi Darmawikarta, Robert Alan May, Sri Ranga Sai Boyapati, Telesphor Kamgaing
  • Patent number: 11239155
    Abstract: Disclosed herein are structures, devices, and methods for electrostatic discharge protection (ESDP) in integrated circuits (ICs). In some embodiments, an IC component may include a conductive contact structure that includes a first contact element and a second contact element. The first contact element may be exposed at a face of the IC component, the first contact element may be between the face of the IC component and the second contact element, the second contact element may be spaced apart from the first contact element by a gap, and the second contact element may be in electrical contact with an electrical pathway in the IC component.
    Type: Grant
    Filed: December 22, 2019
    Date of Patent: February 1, 2022
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Feras Eid, Johanna M. Swan, Aleksandar Aleksov, Veronica Aleman Strong
  • Patent number: 11227825
    Abstract: Embodiments of the invention include an electrical package and methods of forming the package. In one embodiment, a transformer may be formed in the electrical package. The transformer may include a first conductive loop that is formed over a first dielectric layer. A thin dielectric spacer material may be used to separate the first conductive loop from a second conductive loop that is formed in the package. Additional embodiments of the invention include forming a capacitor formed in the electrical package. For example, the capacitor may include a first capacitor plate that is formed over a first dielectric layer. A thin dielectric spacer material may be used to separate the first capacitor plate form a second capacitor plate that is formed in the package. The thin dielectric spacer material in the transformer and capacitor allow for increased coupling factors and capacitance density in electrical components.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 18, 2022
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Mathew J. Manusharow, Krishna Bharath, William J. Lambert, Robert L. Sankman, Aleksandar Aleksov, Brandon M. Rawlings, Feras Eid, Javier Soto Gonzalez, Meizi Jiao, Suddhasattwa Nad, Telesphor Kamgaing
  • Patent number: 11222856
    Abstract: Embodiments may relate to a package substrate that includes a signal line and a ground line. The package substrate may further include a switch communicatively coupled with the ground line. The switch may have an open position where the switch is communicatively decoupled with the signal line, and a closed position where the switch is communicatively coupled with the signal line. Other embodiments may be described or claimed.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: January 11, 2022
    Assignee: Intel Corporation
    Inventors: Feras Eid, Veronica Aleman Strong, Aleksandar Aleksov, Adel A. Elsherbini, Johanna M. Swan
  • Patent number: 11222836
    Abstract: Device package and a method of forming a device package are described. The device package includes an interposer with interconnects on an interconnect package layer and a conductive layer on the interposer. The device package has dies on the conductive layer, where the package layer includes a zero-misalignment two-via stack (ZM2VS) and a dielectric. The ZM2VS directly coupled to the interconnect. The ZM2VS further includes the dielectric on a conductive pad, a first via on a first seed, and first seed on a top surface of the conductive pad, where the first via extends through dielectric. The ZM2VS also has a conductive trace on dielectric, and a second via on a second seed, the second seed is on the dielectric, where the conductive trace connects to first and second vias, where second via connects to an edge of conductive trace opposite from first via.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: January 11, 2022
    Assignee: Intel Corporation
    Inventors: Veronica Strong, Aleksandar Aleksov, Brandon Rawlings, Johanna Swan
  • Publication number: 20210410343
    Abstract: Embodiments may relate to a microelectronic package comprising: a die and a package substrate coupled to the die with a first interconnect on a first face. The package substrate comprises: a second interconnect and a third interconnect on a second face opposite to the first face; a conductive signal path between the first interconnect and the second interconnect; a conductive ground path between the second interconnect and the third interconnect; and an electrostatic discharge (ESD) protection material coupled to the conductive ground path. The ESD protection material comprises a first electrically-conductive carbon allotrope having a first functional group, a second electrically-conductive carbon allotrope having a second functional group, and an electrically-conductive polymer chemically bonded to the first functional group and the second functional group permitting an electrical signal to pass between the first and second electrically-conductive carbon allotropes.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Veronica Aleman Strong, Johanna M. Swan, Aleksandar Aleksov, Adel A. Elsherbini, Feras Eid
  • Patent number: 11211345
    Abstract: In-package radio frequency (RF) waveguides as high bandwidth chip-to-chip interconnects and methods for using the same are disclosed. In one example, an electronic package includes a package substrate, first and second silicon dies or tiles, and an RF waveguide. The first and second silicon dies or tiles are attached to the package substrate. The RF waveguide is formed in the package substrate and interconnects the first silicon die or tile with the second silicon die or tile.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: December 28, 2021
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Telesphor Kamgaing, Sri Ranga Sai Boyapati, Kristof Darmawikarta, Eyal Fayneh, Ofir Degani, David Levy, Johanna M. Swan
  • Publication number: 20210376437
    Abstract: A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Inventors: Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Sasha N. Oster, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Publication number: 20210375746
    Abstract: Processes and structures resulting therefrom for the improvement of high speed signaling integrity in electronic substrates of integrated circuit packages, which is achieved with the formation of airgap structures within dielectric material(s) between adjacent conductive routes that transmit/receive electrical signals, wherein the airgap structures decrease the capacitance and/or decrease the insertion losses in the dielectric material used to form the electronic substrates.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 2, 2021
    Applicant: INTEL CORPORATION
    Inventors: Hongxia Feng, Jeremy Ecton, Aleksandar Aleksov, Haobo Chen, Xiaoying Guo, Brandon C. Marin, Zhiguo Qian, Daryl Purcell, Leonel Arana, Matthew Tingey
  • Patent number: 11189580
    Abstract: Disclosed herein are structures, devices, and methods for electrostatic discharge protection (ESDP) in integrated circuits (ICs). For example, in some embodiments, an IC package support may include: a first conductive structure in a dielectric material; a second conductive structure in the dielectric material; and a material in contact with the first conductive structure and the second conductive structure, wherein the material includes a polymer, and the material is different from the dielectric material. The material may act as a dielectric material below a trigger voltage, and as a conductive material above the trigger voltage.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 30, 2021
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Krishna Bharath, Feras Eid, Johanna M. Swan, Aleksandar Aleksov, Veronica Aleman Strong
  • Publication number: 20210358855
    Abstract: An integrated circuit package may be formed including at least one die side integrated circuit device having an active surface electrically attached to an electronic interposer, wherein the at least one die side integrated circuit device is at least partially encased in a mold material layer and wherein a back surface of the at least one die side integrated circuit device is in substantially the same plane as an outer surface of the mold material layer. At least one stacked integrated circuit device may be electrically attached to the back surface of the at least one die side integrated circuit through an interconnection structure formed between the at least one die side integrated circuit device and the at least one stacked integrated circuit device.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Applicant: Intel Corporation
    Inventors: Veronica Strong, Aleksandar Aleksov, Henning Braunisch, Brandon Rawlings, Johanna Swan, Shawna Liff
  • Publication number: 20210358872
    Abstract: Semiconductor packages having a die electrically connected to an antenna by a coaxial interconnect are described. In an example, a semiconductor package includes a molded layer between a first antenna patch and a second antenna patch of the antenna. The first patch may be electrically connected to the coaxial interconnect, and the second patch may be mounted on the molded layer. The molded layer may be formed from a molding compound, and may have a stiffness to resist warpage during fabrication and use of the semiconductor package.
    Type: Application
    Filed: July 28, 2021
    Publication date: November 18, 2021
    Inventors: Srinivas V. PIETAMBARAM, Rahul N. MANEPALLI, Kristof Kuwawi DARMAWIKARTA, Robert Alan MAY, Aleksandar ALEKSOV, Telesphor KAMGAING
  • Publication number: 20210343673
    Abstract: A patch structure of an integrated circuit package comprises a core having a first side facing downwards and a second side facing upwards. A first solder resist (SR) layer is formed on the first side of the core, wherein the first SR layer comprises a first layer interconnect (FLI) and has a first set of one or more microbumps thereon to bond to one or more logic die. A second solder resist (SR) layer is formed on the second side of the core, wherein the second SR layer has a second set of one or more microbumps thereon to bond with a substrate. One or more bridge dies includes a respective sets of bumps, wherein the one or more bridge dies is disposed flipped over within the core such that the respective sets of bumps face downward and connect to the first set of one or more microbumps in the FLI.
    Type: Application
    Filed: July 2, 2021
    Publication date: November 4, 2021
    Inventors: Changhua LIU, Xiaoying GUO, Aleksandar ALEKSOV, Steve S. CHO, Leonel ARANA, Robert MAY, Gang DUAN