Patents by Inventor Alexander A. Ned

Alexander A. Ned has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110275192
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 500 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 500 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Application
    Filed: July 22, 2011
    Publication date: November 10, 2011
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Publication number: 20110239772
    Abstract: A dual diaphragm pressure transducer, or sensor, with compensation for non-pressure effects is disclosed. The pressure sensor can include two pressure transducers located on separate portions of a chip. The first pressure transducer can be a differential pressure transducer, which produces a signal proportional to one or more applied pressures and includes other non-pressure effects. The second pressure transducer can be sealed in a hermetic chamber and thus can produce a signal proportional only to non-pressure effects. The signals can be combined to produce a signal proportional to the applied pressures with no non-pressure effects. The first and second pressure transducers can be physically and/or electrically isolated to improve sealing between the two pressure transducers and prevent pressure leaks therebetween.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned, Sorin Stefanescu, Nora Kurtz
  • Patent number: 7989894
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 500 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 500 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 2, 2011
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7874216
    Abstract: There is disclosed a method and apparatus for mounting a leadless semiconductor chip on a header. The semiconductor chip has contacts on a surface and the chip is of a specified geometric shape. The header has a contact surface for receiving the chip with the contact surface of the header containing header contact pins, which pins have to contact the contacts on the semiconductor chip. The header has a guide pin extending from the contact surface and there is a guide plate which has an aperture adapted to be placed over the guide pin, the guide plate further has a chip accommodating aperture of the same geometric shape as the chip. The guide plate, when placed over the guide pin enables the chip to be placed in the chip accommodating aperture so that the contacts of the header pin are properly and accurately aligned with respect to the contacts on the semiconductor chip.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: January 25, 2011
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander Ned, Scott Goodman
  • Publication number: 20100193908
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 500 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 500 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 5, 2010
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Publication number: 20100185403
    Abstract: A system for measuring a multiplicity of pressures as those experienced by a model in a wind tunnel is depicted. The system includes individual sensor devices which are connected to an Acquisition and Compensation electronics module. The individual sensor or transducer devices are semiconductor piezoresistive devices and are connected to the Acquisition and Compensation electronics module by means of a cable in a first embodiment. In an alternate embodiment the system uses connectors which connect each of the individual sensor devices to the Acquisition and Compensation electronics module via a mating connector located therein. The connectors may also include a memory which stores compensation coefficients associated with each of the various sensor devices. In this manner as described, the transducers which are small devices are connected via electrical lines or cables to the central Acquisition and Compensation electronics modules.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 22, 2010
    Applicant: Kulite Semiconductor Products,Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned, Joseph Van DeWeert
  • Publication number: 20100122581
    Abstract: A novel flexible transducer structure is suitable for attaching to curved surface such as the leading edge of an aircraft wing. The structure comprises a thin flexible sheet of an insulating material with a leadless transducer secured to the sheet. The sheet is then placed over the curved surface and assumes the curvature of the surface. The transducer secured to the sheet provides an output of pressure according the pressure exerted on the sheet. The sheet basically is fabricated from a thin material such as Kapton and is flexible so as to assume the curvature of the surface with the transducer being exposed to pressure applied to the curved surface. The sensor in conjunction with the flexible sheet allows pressure to be measured without disturbing the air flow patterns of the measuring surfaces and because of its construction, is moisture resistant over a large variety of atmospheric conditions.
    Type: Application
    Filed: November 14, 2008
    Publication date: May 20, 2010
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Scott J. Goodman, Alexander A. Ned
  • Publication number: 20100107773
    Abstract: A piezoresistive sensor device and a method for making a piezoresistive device are disclosed. The sensor device comprises a silicon wafer having piezoresistive elements and contacts in electrical communication with the elements. The sensor device further comprises a contact glass coupled to the silicon wafer and having apertures aligned with the contacts. The sensor device also comprises a non-conductive frit for mounting the contact glass to a header glass, and a conductive non-lead glass frit disposed in the apertures and in electrical communication with the contacts. The method for making a piezoresistive sensor device, comprises bonding a contact glass to a silicon wafer such that apertures in the glass line up with contacts on the wafer, and filling the apertures with a non-lead glass frit such that the frit is in electrical communication with the contacts.
    Type: Application
    Filed: January 13, 2010
    Publication date: May 6, 2010
    Applicant: KULITE SEMICONDUCTOR PRODUCTS, INC.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7709897
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 200 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 200 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: May 4, 2010
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Publication number: 20090313797
    Abstract: There is disclosed a method and apparatus for mounting a leadless semiconductor chip on a header. The semiconductor chip has contacts on a surface and the chip is of a specified geometric shape. The header has a contact surface for receiving the chip with the contact surface of the header containing header contact pins, which pins have to contact the contacts on the semiconductor chip. The header has a guide pin extending from the contact surface and there is a guide plate which has an aperture adapted to be placed over the guide pin, the guide plate further has a chip accommodating aperture of the same geometric shape as the chip. The guide plate, when placed over the guide pin enables the chip to be placed in the chip accommodating aperture so that the contacts of the header pin are properly and accurately aligned with respect to the contacts on the semiconductor chip.
    Type: Application
    Filed: October 20, 2008
    Publication date: December 24, 2009
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander Ned, Scott Goodman
  • Publication number: 20090294740
    Abstract: A method to prevent the catastrophic failure of electrical contacts of silicon piezoresistive transducers located on a silicon wafer at temperatures above 600° C. comprising the steps of using a lead-free glass frit to surround the contacts and bonding the sensor wafer to a glass wafer employing a lead-free glass and utilizing a modified electrostatic bonding technique to join the silicon wafer to the lead-free glass wafer to form a high temperature SOI device.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 3, 2009
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7610812
    Abstract: A semiconductor chip for use in fabricating pressure transducers, including: a semiconductor wafer having a top and a bottom surface, a layer of an insulating material formed on the top surface, the bottom surface having at least two recesses of substantially equal dimensions and spaced apart, the recesses providing first and second substantially equal thin active areas, which areas deflect upon application to a force applied to the top surface, a first plurality of piezoresistive devices arranged in a given pattern and positioned on the insulating material and located within the first area, a second equal plurality of piezoresistive devices arranged in the identical pattern and located on the insulating material within the second active area, first connecting means for connecting the first plurality of piezoresistive devices in a first array, second connecting means for connecting the second plurality of piezoresistive devices in a second array corresponding to the first array.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: November 3, 2009
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7451655
    Abstract: A high temperature pressure sensing system (transducer) including: a pressure sensing piezoresistive sensor formed by a silicon-on-insulator (SOI) process; a SOI amplifier circuit operatively coupled to the piezoresistive sensor; a SOI gain controller circuit including a plurality of resistances that when selectively coupled to the amplifier adjust a gain of the amplifier; a plurality of off-chip contacts corresponding to the resistances, respectively, for electrically activating the corresponding resistances and using a metallization layer for the SOI sensor and SOI ASIC suitable for high temperature interconnections (bonding); wherein the piezoresistive sensor, amplifier circuit and gain control circuit are suitable for use in environments having a temperature greater than 175 degrees C. and reaching between 250° C. and 300° C., and wherein the entire transducer has a high immunity to nuclear radiation.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: November 18, 2008
    Assignee: Kulite Semiconductor Product, Inc.
    Inventors: Anthony D. Kurtz, Wolf S. Landmann, Alexander A. Ned
  • Patent number: 7439159
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 200 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 200 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: October 21, 2008
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7436037
    Abstract: A differential pressure sensor has a semiconductor wafer having a top and bottom surface. The top surface of the wafer has a central active area containing piezoresistive elements. These elements are passivated and covered with a layer of silicon dioxide. Each element has a contact terminal associated therewith. The semiconductor wafer has an outer peripheral silicon frame surrounding the active area. The semiconductor wafer is bonded to a glass cover member via an anodic or electrostatic bond by bonding the outer peripheral frame to the periphery of the glass wafer. An inner silicon dioxide frame forms a compression bond with the glass wafer when the glass wafer is bonded to the silicon frame. This compression bond prevents deleterious fluids from entering the active area or destroying the silicon. The above described apparatus is mounted on a header such that through holes in the glass wafer are aligned with the header terminals.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: October 14, 2008
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Publication number: 20080217728
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 200 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 200 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Application
    Filed: May 8, 2008
    Publication date: September 11, 2008
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7363820
    Abstract: An ultra high temperature hermetically protected transducer includes a sensor chip having an active area upon which is deposited piezoresistive sensing elements. The elements are located on the top surface of the silicon wafer chip and have leads and terminals extending from the active area of the chip. The active area is surrounded with an extending rim or frame. The active area is coated with an oxide layer which passivates the piezoresistive sensing network. The chip is then attached to a glass pedestal, which is larger in size than the sensor chip. The glass pedestal has a through hole or aperture at each corner. The entire composite structure is then mounted onto a high temperature header with the metallized regions of the header being exposed to the holes in the glass pedestal; a high temperature lead is then bonded directly to the metallized contact area of the sensor chip at one end. The leads are of sufficient length to extend into the through holes in the glass pedestal.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: April 29, 2008
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Publication number: 20080028863
    Abstract: A high temperature pressure sensing system (transducer) including: a pressure sensing piezoresistive sensor formed by a silicon-on-insulator (SOI) process; a SOI amplifier circuit operatively coupled to the piezoresistive sensor; a SOI gain controller circuit including a plurality of resistances that when selectively coupled to the amplifier adjust a gain of the amplifier; a plurality of off-chip contacts corresponding to the resistances, respectively, for electrically activating the corresponding resistances and using a metallization layer for the SOI sensor and SOI ASIC suitable for high temperature interconnections (bonding); wherein the piezoresistive sensor, amplifier circuit and gain control circuit are suitable for use in environments having a temperature greater than 175 degrees C. and reaching between 250° C. and 300° C., and wherein the entire transducer has a high immunity to nuclear radiation.
    Type: Application
    Filed: February 22, 2007
    Publication date: February 7, 2008
    Inventors: Anthony Kurtz, Wolf Landmann, Alexander Ned
  • Patent number: 7307325
    Abstract: A silicon wafer is fabricated utilizing two or more semiconductor wafers. The wafers are processed using conventional wafer processing techniques and the wafer contains a plurality of output terminals which essentially are platinum titanium metallization or high temperature contacts. A glass cover member is provided which has a plurality of through holes. Each through hole is associated with a contact on the semiconductor wafer. A high temperature lead is directed through the through hole or aperture in the glass cover and is bonded directly to the appropriate contact. The lead is of a sufficient length to extend into a second non through aperture in the contact glass. The non through aperture is located on the side of the contact glass not in contact with the silicon sensor. The non through aperture is then filled with a high temperature conductive glass frit. A plurality of slots are provided.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: December 11, 2007
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned, Scott J. Goodman
  • Publication number: 20070254796
    Abstract: A method to prevent the catastrophic failure of electrical contacts of silicon piezoresistive transducers located on a silicon wafer at temperatures above 600° C. comprising the steps of using a lead-free glass frit to surround the contacts and bonding the sensor wafer to a glass wafer employing a lead-free glass and utilizing a modified electrostatic bonding technique to join the silicon wafer to the lead-free glass wafer to form a high temperature SOI device.
    Type: Application
    Filed: April 26, 2006
    Publication date: November 1, 2007
    Inventors: Anthony Kurtz, Alexander Ned