Patents by Inventor Alexander Kastalsky

Alexander Kastalsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9007676
    Abstract: An electrostatic display employing MEMS (Micro-Electro-Mechanical System) technology is disclosed. The transition from white to black pixel color occurs as two cantilevers covering the pixel area are electrostatically turned from their position parallel to the substrate plane to the position normal to the substrate plane. Four electrode pixel control circuits are used to form row and column matrix. This matrix employs a bi-stability effect resulting from the difference in voltages needed to move the cantilever into an upright position and hold the cantilever in this position.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: April 14, 2015
    Assignee: Copytele, Inc.
    Inventors: Alexander Kastalsky, Anthony J. Campisi
  • Publication number: 20140287909
    Abstract: Two methods of producing nano-pads of catalytic metal for growth of single walled carbon nanotubes (SWCNT) are disclosed. Both methods utilize a shadow mask technique, wherein the nano-pads are deposited from the catalytic metal source positioned under the angle toward the vertical walls of the opening, so that these walls serve as a shadow mask. In the first case, the vertical walls of the photo-resist around the opening are used as a shadow mask, while in the second case the opening is made in a thin layer of the dielectric layer serving as a shadow mask. Both methods produce the nano-pad areas sufficiently small for the growth of the SWCNT from the catalytic metal balls created after high temperature melting of the nano-pads.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventor: ALEXANDER KASTALSKY
  • Publication number: 20140287575
    Abstract: A new method of electrophoretic nanotube deposition is proposed wherein individual nanotubes are placed on metal electrodes which have their length significantly exceeding their width, while the nanotube length is chosen to be close to that of the metal electrode. Due to electrostatic attraction of individual nanotube to the elongated electrode, every nanotube approaching the electrode is deposited along the electrode, since such an orientation is energetically favorable. This method offers opportunity to produce oriented arrays of individual nanotubes, which opens up a new technique for fabrication and mass production of nanotube-based devices and circuits. Several such devices are considered. These are MESFET- and MOSFET-like transistors and CMOS-like voltage inverter.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventor: ALEXANDER KASTALSKY
  • Publication number: 20140284553
    Abstract: The carbon nanotube-based electronic and photonic devices are disclosed. The devices are united by the same technology as well as similar elements for their fabrication. The devices consist of the vertically grown semiconductor nanotube having two Schottky barriers at the nanotube ends and one Schottky barrier at the middle of the nanotube. Depending on the Schottky barrier heights and bias arrangements, the disclosed devices can operate either as transistors, CNT MESFET and CNT Hot Electron Transistor, or as a CNT Photon Emitter.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventor: ALEXANDER KASTALSKY
  • Patent number: 8795772
    Abstract: Two methods of producing nano-pads of catalytic metal for growth of single walled carbon nanotubes (SWCNT) are disclosed. Both methods utilize a shadow mask technique, wherein the nano-pads are deposited from the catalytic metal source positioned under the angle toward the vertical walls of the opening, so that these walls serve as a shadow mask. In the first case, the vertical walls of the photo-resist around the opening are used as a shadow mask, while in the second case the opening is made in a thin layer of the dielectric layer serving as a shadow mask. Both methods produce the nano-pad areas sufficiently small for the growth of the SWCNT from the catalytic metal balls created after high temperature melting of the nano-pads.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: August 5, 2014
    Assignee: Nano-Electronic And Photonic Devices And Circuits, LLC
    Inventor: Alexander Kastalsky
  • Patent number: 8785309
    Abstract: A new method of electrophoretic nanotube deposition is proposed wherein individual nanotubes are placed on metal electrodes which have their length significantly exceeding their width, while the nanotube length is chosen to be close to that of the metal electrode. Due to electrostatic attraction of individual nanotube to the elongated electrode, every nanotube approaching the electrode is deposited along the electrode, since such an orientation is energetically favorable. This method offers opportunity to produce oriented arrays of individual nanotubes, which opens up a new technique for fabrication and mass production of nanotube-based devices and circuits. Several such devices are considered. These are MESFET- and MOSFET-like transistors and CMOS-like voltage inverter.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: July 22, 2014
    Assignee: Nano-Electronic And Photonic Devices And Circuits, LLC
    Inventor: Alexander Kastalsky
  • Patent number: 8754397
    Abstract: The carbon nanotube-based electronic and photonic devices are disclosed. The devices are united by the same technology as well as similar elements for their fabrication. The devices consist of the vertically grown semiconductor nanotube having two Schottky barriers at the nanotube ends and one Schottky barrier at the middle of the nanotube. Depending on the Schottky barrier heights and bias arrangements, the disclosed devices can operate either as transistors, CNT MESFET and CNT Hot Electron Transistor, or as a CNT Photon Emitter.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 17, 2014
    Assignee: Nano-Electronic and Photonic Devices and Circuits, LLC
    Inventor: Alexander Kastalsky
  • Publication number: 20140155253
    Abstract: Two methods of producing nano-pads of catalytic metal for growth of single walled carbon nanotubes (SWCNT) are disclosed. Both methods utilize a shadow mask technique, wherein the nano-pads are deposited from the catalytic metal source positioned under the angle toward the vertical walls of the opening, so that these walls serve as a shadow mask. In the first case, the vertical walls of the photo-resist around the opening are used as a shadow mask, while in the second case the opening is made in a thin layer of the dielectric layer serving as a shadow mask. Both methods produce the nano-pad areas sufficiently small for the growth of the SWCNT from the catalytic metal balls created after high temperature melting of the nano-pads.
    Type: Application
    Filed: February 21, 2012
    Publication date: June 5, 2014
    Inventor: Alexander Kastalsky
  • Publication number: 20140154847
    Abstract: A new method of electrophoretic nanotube deposition is proposed wherein individual nanotubes are placed on metal electrodes which have their length significantly exceeding their width, while the nanotube length is chosen to be close to that of the metal electrode. Due to electrostatic attraction of individual nanotube to the elongated electrode, every nanotube approaching the electrode is deposited along the electrode, since such an orientation is energetically favorable. This method offers opportunity to produce oriented arrays of individual nanotubes, which opens up a new technique for fabrication and mass production of nanotube-based devices and circuits. Several such devices are considered. These are MESFET- and MOSFET-like transistors and CMOS-like voltage inverter.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicant: Nano-Electronic and Photonic Devices and Circuits, LLC
    Inventor: Alexander Kastalsky
  • Publication number: 20140103299
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Inventor: ALEXANDER KASTALSKY
  • Patent number: 8624224
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: January 7, 2014
    Assignee: Nano-Electronic and Photonic Devices and Circuits, LLC
    Inventor: Alexander Kastalsky
  • Patent number: 8610104
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: December 17, 2013
    Assignee: Nano-Electronic and Photonic Devices and Circuits, LLC
    Inventor: Alexander Kastalsky
  • Patent number: 8610125
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: December 17, 2013
    Assignee: Nano-Electronic and Photonic Devices and Circuits, LLC
    Inventor: Alexander Kastalsky
  • Publication number: 20130217565
    Abstract: Two methods of producing nano-pads of catalytic metal for growth of single walled carbon nanotubes (SWCNT) are disclosed. Both methods utilize a shadow mask technique, wherein the nano-pads are deposited from the catalytic metal source positioned under the angle toward the vertical walls of the opening, so that these walls serve as a shadow mask. In the first case, the vertical walls of the photo-resist around the opening are used as a shadow mask, while in the second case the opening is made in a thin layer of the dielectric layer serving as a shadow mask. Both methods produce the nano-pad areas sufficiently small for the growth of the SWCNT from the catalytic metal balls created after high temperature melting of the nano-pads.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 22, 2013
    Inventor: Alexander Kastalsky
  • Patent number: 8492249
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: July 23, 2013
    Assignee: Nano-Electronic And Photonic Devices And Circuits, LLC
    Inventor: Alexander Kastalsky
  • Publication number: 20130146836
    Abstract: The carbon nanotube-based electronic and photonic devices are disclosed. The devices are united by the same technology as well as similar elements for their fabrication. The devices consist of the vertically grown semiconductor nanotube having two Schottky barriers at the nanotube ends and one Schottky barrier at the middle of the nanotube. Depending on the Schottky barrier heights and bias arrangements, the disclosed devices can operate either as transistors, CNT MESFET and CNT Hot Electron Transistor, or as a CNT Photon Emitter.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Inventor: Alexander Kastalsky
  • Patent number: 8440994
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The discussed electronic and photonic devices and circuits rely on the nanotube arrays grown on a variety of substrates, such as glass or Si wafer. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for a large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on Si-wafers, the CNT-based devices can be combined with the Si circuit elements, thus producing hybrid Si-CNT devices and circuits.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: May 14, 2013
    Assignee: Nano-Electronic and Photonic Devices and Circuits, LLC
    Inventor: Alexander Kastalsky
  • Publication number: 20110186809
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Application
    Filed: January 7, 2011
    Publication date: August 4, 2011
    Inventor: ALEXANDER KASTALSKY
  • Publication number: 20110186808
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Application
    Filed: January 7, 2011
    Publication date: August 4, 2011
    Inventor: ALEXANDER KASTALSKY
  • Publication number: 20110188527
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Application
    Filed: January 7, 2011
    Publication date: August 4, 2011
    Inventor: ALEXANDER KASTALSKY