Patents by Inventor Alexander M. Derrickson

Alexander M. Derrickson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230075949
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a lateral bipolar transistor and methods of manufacture. The structure includes: an extrinsic base region composed of semiconductor material; an emitter region on a first side of the extrinsic base region; a collector region on a second side of the extrinsic base region; and an extrinsic base contact wrapping around the semiconductor material of the extrinsic base region.
    Type: Application
    Filed: December 14, 2021
    Publication date: March 9, 2023
    Inventors: Jagar Singh, Alexander M. Derrickson, Alexander Martin
  • Publication number: 20230065785
    Abstract: Disclosed is a semiconductor structure with a lateral bipolar junction transistor (BJT). This semiconductor structure can be readily integrated into advanced silicon-on-insulator (SOI) technology platforms. Furthermore, to maintain or improve upon performance characteristics (e.g., cut-off frequency (fT)/maximum oscillation frequency (fmax) and beta cut-off frequency) that would otherwise be negatively impacted due to changing of the orientation of the BJT from vertical to lateral, the semiconductor structure can further include a dielectric stress layer (e.g., a tensilely strained layer in the case of an NPN-type transistor or a compressively strained layer in the case of a PNP-type transistor) partially covering the lateral BJT for charge carrier mobility enhancement and the lateral BJT can be configured as a lateral heterojunction bipolar transistor (HBT). Also disclosed is a method for forming the semiconductor structure.
    Type: Application
    Filed: December 20, 2021
    Publication date: March 2, 2023
    Applicant: GlobalFoundries U.S. Inc.
    Inventors: Jagar Singh, Alexander M. Derrickson, Alvin J. Joseph, Andreas Knorr, Judson R. Holt
  • Publication number: 20230065924
    Abstract: Disclosed is a semiconductor structure including a lateral heterojunction bipolar transistor (HBT). The structure includes a substrate (e.g., a silicon substrate), an insulator layer on the substrate, and a semiconductor layer (e.g., a silicon germanium layer) on the insulator layer. The structure includes a lateral HBT with three terminals including a collector, an emitter, and a base, which is positioned laterally between the collector and the emitter and which can include a silicon germanium intrinsic base region for improved performance. Additionally, the collector and/or the emitter includes: a first region, which is epitaxially grown within a trench that extends through the semiconductor layer and the insulator layer to the substrate; and a second region, which is epitaxially grown on the first region. The connection(s) of the collector and/or the emitter to the substrate effectively form thermal exit path(s) and minimize self-heating. Also disclosed is a method for forming the structure.
    Type: Application
    Filed: October 27, 2021
    Publication date: March 2, 2023
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Alexander M. Derrickson, Haiting Wang, Judson R. Holt, Vibhor Jain, Richard F. Taylor, III
  • Publication number: 20230063301
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to annular bipolar transistors and methods of manufacture.
    Type: Application
    Filed: December 21, 2021
    Publication date: March 2, 2023
    Inventors: Alexander M. Derrickson, Arkadiusz Malinowski, Jagar Singh, Mankyu Yang, Judson R. Holt
  • Publication number: 20230062013
    Abstract: Embodiments of the disclosure provide a lateral bipolar transistor on a semiconductor fin and methods to form the same. A bipolar transistor structure according to the disclosure may include a doped semiconductor layer coupled to a base contact. A first semiconductor fin on the doped semiconductor layer may have a first doping type. An emitter/collector (E/C) material may be on a sidewall of an upper portion of the first semiconductor fin. The E/C material has a second doping type opposite the first doping type. The E/C material is coupled to an E/C contact.
    Type: Application
    Filed: December 17, 2021
    Publication date: March 2, 2023
    Inventors: Judson R. Holt, Hong Yu, Alexander M. Derrickson
  • Publication number: 20230067523
    Abstract: Embodiments of the disclosure provide a lateral bipolar transistor with a base layer of varying horizontal thickness, and related methods to form the same. A lateral bipolar transistor may include an emitter/collector (E/C) layer on a semiconductor layer. A first base layer is on the semiconductor layer and horizontally adjacent the E/C layer. The first base layer has a lower portion having a first horizontal width from the E/C layer. The first base layer also has an upper portion on the lower portion, with a second horizontal width from the E/C layer greater than the first horizontal width. A second base layer is on the first base layer and adjacent a spacer. The upper portion of the first base layer separates a lower surface of the second base layer from the E/C layer.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 2, 2023
    Inventors: Haiting Wang, Hong Yu, Zhenyu Hu, Alexander M. Derrickson
  • Publication number: 20230062194
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a lateral bipolar transistor and methods of manufacture. The structure includes: an extrinsic base region; an emitter region on a first side of the extrinsic base region; a collector region on a second side of the extrinsic base region; and a gate structure comprising a gate oxide and a gate control in a same channel region as the extrinsic base region.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 2, 2023
    Inventors: Judson R. Holt, Vibhor Jain, Alexander M. Derrickson
  • Publication number: 20230064512
    Abstract: Embodiments of the disclosure provide a lateral bipolar transistor structure with a superlattice layer and methods to form the same. The bipolar transistor structure may have a semiconductor layer of a first single crystal semiconductor material over an insulator layer. The semiconductor layer includes an intrinsic base region having a first doping type. An emitter/collector (E/C) region may be adjacent the intrinsic base region and may have a second doping type opposite the first doping type. A superlattice layer is on the E/C region of the semiconductor layer. A raised E/C terminal, including a single crystal semiconductor material, is on the superlattice layer. The superlattice layer separates the E/C region from the raised E/C terminal.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 2, 2023
    Inventors: Vibhor Jain, John J. Pekarik, Alvin J. Joseph, Alexander M. Derrickson, Judson R. Holt
  • Publication number: 20230058451
    Abstract: Embodiments of the disclosure provide a lateral bipolar transistor structure with a marker layer for emitter and collector terminals. A lateral bipolar transistor structure according to the disclosure includes a semiconductor layer over an insulator layer. The semiconductor layer includes an emitter/collector (E/C) region having a first doping type and an intrinsic base region adjacent the E/C region and having a second doping type opposite the first doping type. A marker layer is on the E/C region of the semiconductor layer, and a raised E/C terminal is on the marker layer. An extrinsic base is on the intrinsic base region of the semiconductor layer, and a spacer is horizontally between the raised E/C terminal and the extrinsic base.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 23, 2023
    Inventors: Vibhor Jain, Alexander M. Derrickson, Judson R. Holt
  • Patent number: 11588044
    Abstract: Embodiments of the disclosure provide a bipolar junction transistor (BJT) structure and related method. A BJT according to the disclosure may include a base over a semiconductor substrate. A collector is over the semiconductor substrate and laterally abuts a first horizontal end of the base. An emitter is over the semiconductor substrate and laterally abuts a second horizontal end of the base opposite the first horizontal end. A horizontal interface between the emitter and the base is smaller than a horizontal interface between the collector and the base.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: February 21, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Alexander M. Derrickson, Mankyu Yang, Richard F. Taylor, III, Jagar Singh, Alexander L. Martin
  • Patent number: 11575029
    Abstract: Disclosed is a semiconductor structure including at least one bipolar junction transistor (BJT), which is uniquely configured so that fabrication of the BJT can be readily integrated with fabrication of complementary metal oxide semiconductor (CMOS) devices on an advanced silicon-on-insulator (SOI) wafer. The BJT has an emitter, a base, and a collector laid out horizontally across an insulator layer and physically separated. Extension regions extend laterally between the emitter and the base and between the base and the collector and are doped to provide junctions between the emitter and the base and between the base and the collector. Gate structures are on the extension regions. The emitter, base, and collector are contacted. Optionally, the gate structures and a substrate below the insulator layer are contacted and can be biased to optimize BJT performance. Optionally, the structure further includes one or more CMOS devices. Also disclosed is a method of forming the structure.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: February 7, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Alexander M. Derrickson, Richard F. Taylor, III, Mankyu Yang, Alexander L. Martin, Judson R. Holt, Jagar Singh
  • Publication number: 20230032080
    Abstract: Disclosed is a semiconductor structure that includes an asymmetric lateral bipolar junction transistor (BJT). The BJT includes an emitter, a base, a collector extension and a collector arranged side-by-side (i.e., laterally) across a semiconductor layer. The emitter, collector and collector extension have a first type conductivity with the collector extension having a lower conductivity level than either the emitter or the collector. The base has a second type conductivity that is different from the first type conductivity. With such a lateral configuration, the BJT can be easily integrated with CMOS devices on advanced SOI technology platforms. With such an asymmetric configuration and, particularly, given the inclusion of the collector extension but not an emitter extension, the BJT can achieve a relatively high collector-emitter breakdown voltage (Vbr-CEO) without a significant risk of leakage currents at high voltages. Also disclosed are method embodiments for forming such a semiconductor structure.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 2, 2023
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Alexander M. Derrickson, Mankyu Yang, Judson R. Holt, Jagar Singh, Alexander L. Martin, Richard F. Taylor, III
  • Publication number: 20220376093
    Abstract: Disclosed is a semiconductor structure including at least one bipolar junction transistor (BJT), which is uniquely configured so that fabrication of the BJT can be readily integrated with fabrication of complementary metal oxide semiconductor (CMOS) devices on an advanced silicon-on-insulator (SOI) wafer. The BJT has an emitter, a base, and a collector laid out horizontally across an insulator layer and physically separated. Extension regions extend laterally between the emitter and the base and between the base and the collector and are doped to provide junctions between the emitter and the base and between the base and the collector. Gate structures are on the extension regions. The emitter, base, and collector are contacted. Optionally, the gate structures and a substrate below the insulator layer are contacted and can be biased to optimize BJT performance. Optionally, the structure further includes one or more CMOS devices. Also disclosed is a method of forming the structure.
    Type: Application
    Filed: May 19, 2021
    Publication date: November 24, 2022
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Alexander M. Derrickson, Richard F. Taylor, III, Mankyu Yang, Alexander L. Martin, Judson R. Holt, Jagar Singh
  • Patent number: 11462632
    Abstract: A non-uniform base width bipolar junction transistor (BJT) device includes: a semiconductor substrate, the semiconductor substrate having an upper surface; and a BJT device, the BJT device comprising a collector region, a base region, and an emitter region positioned in the semiconductor substrate, the base region being positioned between the collector region and the emitter region; the base region comprising a top surface and a bottom surface, wherein a first width of the top surface of the base region in a base width direction of the BJT device is greater than a second width of the bottom surface of the base region in the base width direction of the BJT device.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: October 4, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Arkadiusz Malinowski, Alexander M. Derrickson, Ali Razavieh, Halting Wang
  • Publication number: 20220285523
    Abstract: A structure includes a semiconductor fin on a substrate. A first fin transistor (finFET) is on the substrate, and a second finFET is on the substrate adjacent the first finFET. The first finFET and the second finFET include respective pairs of source/drain regions with each including a first dopant of a first polarity. An electrical isolation structure is in the semiconductor fin between one of the source/drain regions of the first finFET and one of the source/drain regions for the second FinFET, the electrical isolation structure including a second dopant of an opposing, second polarity. The electrical isolation structure extends to an upper surface of the semiconductor fin. A related method is also disclosed.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Inventors: Arkadiusz Malinowski, Alexander M. Derrickson, Haiting Wang
  • Patent number: 11424349
    Abstract: A lateral bipolar junction transistor (BJT) device includes: an emitter region, a collector region, and a base region, the base region positioned between and laterally separating the emitter region and the collector region, the base region including an intrinsic base region; and a cavity formed in a semiconductor substrate and filled with an insulating material, the cavity physically separating a lower surface of the intrinsic base region from the semiconductor substrate.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: August 23, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Arkadiusz Malinowski, Alexander M. Derrickson, Judson R. Holt
  • Publication number: 20220262931
    Abstract: A lateral bipolar junction transistor (BJT) device includes: an emitter region, a collector region, and a base region, the base region positioned between and laterally separating the emitter region and the collector region, the base region including an intrinsic base region; and a cavity formed in a semiconductor substrate and filled with an insulating material, the cavity physically separating a lower surface of the intrinsic base region from the semiconductor substrate.
    Type: Application
    Filed: February 17, 2021
    Publication date: August 18, 2022
    Inventors: Arkadiusz Malinowski, Alexander M. Derrickson, Judson R. Holt
  • Publication number: 20220199810
    Abstract: A non-uniform base width bipolar junction transistor (BJT) device includes: a semiconductor substrate, the semiconductor substrate having an upper surface; and a BJT device, the BJT device comprising a collector region, a base region, and an emitter region positioned in the semiconductor substrate, the base region being positioned between the collector region and the emitter region; the base region comprising a top surface and a bottom surface, wherein a first width of the top surface of the base region in a base width direction of the BJT device is greater than a second width of the bottom surface of the base region in the base width direction of the BJT device.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Arkadiusz Malinowski, Alexander M. Derrickson, Ali Razavieh, Haiting Wang
  • Publication number: 20220173230
    Abstract: Embodiments of the disclosure provide a bipolar junction transistor (BJT) structure and related method. A BJT according to the disclosure may include a base over a semiconductor substrate. A collector is over the semiconductor substrate and laterally abuts a first horizontal end of the base. An emitter is over the semiconductor substrate and laterally abuts a second horizontal end of the base opposite the first horizontal end. A horizontal interface between the emitter and the base is smaller than a horizontal interface between the collector and the base.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 2, 2022
    Inventors: Alexander M. Derrickson, Mankyu Yang, Richard F. Taylor, III, Jagar Singh, Alexander L. Martin
  • Patent number: 11152496
    Abstract: Embodiments of the disclosure provide an integrated circuit (IC) structure, including: a semiconductor base on a first portion of a raised region of an insulative layer; a first inner emitter/collector (E/C) material on a second portion of the raised region of the insulative layer, wherein the inner E/C material is directly horizontally between the semiconductor base and a sidewall of the raised region; and a first outer E/C material on a first non-raised region of the insulative layer, wherein an upper portion of the first outer E/C material is adjacent the first inner E/C material.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: October 19, 2021
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Jagar Singh, Alexander L. Martin, Alexander M. Derrickson