Patents by Inventor Alexander Mikhailovich Streltsov

Alexander Mikhailovich Streltsov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964898
    Abstract: A method of cutting a glass sheet comprising a transparent oxide glass includes directing a laser beam from a middle-infrared (mid-IR) laser source onto a major surface of the glass sheet. A wavelength of the laser beam is tuned thereby adjusting an absorption depth of the laser beam in the glass sheet. The glass sheet is cut using the laser beam.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: April 23, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Stephan Lvovich Logunov, Alexander Mikhailovich Streltsov
  • Patent number: 11932445
    Abstract: A glass container including a body having a delamination factor less than or equal to 10 and at least one marking is described. The body has an inner surface, an outer surface, and a wall thickness extending between the outer surface and the inner surface. The marking is located within the wall thickness. In particular, the marking is a portion of the body having a refractive index that differs from a refractive index of an unmarked portion of the body. Methods of forming the marking within the body are also described.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: March 19, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Stephan Lvovich Logunov, Leonard Thomas Masters, William James Miller, Alexander Mikhailovich Streltsov, Christopher Lee Timmons
  • Publication number: 20230329033
    Abstract: Disclosed herein are sealed devices comprising a first substrate, a second substrate, an inorganic film between the first and second substrates, and at least one weld region comprising a bond between the first and second substrates. The weld region can comprise a chemical composition different from that of the inorganic film and the first or second substrates. The sealed devices may further comprise a stress region encompassing at least the weld region, in which a portion of the device is under a greater stress than the remaining portion of the device. Also disclosed herein are display and electronic components comprising such sealed devices.
    Type: Application
    Filed: June 1, 2023
    Publication date: October 12, 2023
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 11711938
    Abstract: Disclosed herein are sealed devices comprising a first substrate, a second substrate, an inorganic film between the first and second substrates, and at least one weld region comprising a bond between the first and second substrates. The weld region can comprise a chemical composition different from that of the inorganic film and the first or second substrates. The sealed devices may further comprise a stress region encompassing at least the weld region, in which a portion of the device is under a greater stress than the remaining portion of the device. Also disclosed herein are display and electronic components comprising such sealed devices.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: July 25, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20230092019
    Abstract: An article includes a glass ceramic that has an amorphous silicate glass phase and a crystalline phase including a species of MxWO3 with 0<x<1 and M an intercalated dopant cation. The article further includes an aperture configured to be formed via local heating of a portion of the glass ceramic to a temperature that is above the softening point of the glass ceramic. The aperture comprises constituents of the silicate glass phase and the crystalline phase but is substantially free of the species of MxWO3. A ratio of a transmittance of the aperture to a transmittance of the glass ceramic not subject to the local heating is at least 6,000 with transmittance measured in %/mm at wavelengths from 500 nm to 1100 nm.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 23, 2023
    Inventors: Matthew John Dejneka, Jesse Kohl, Alexander Mikhailovich Streltsov
  • Patent number: 11530155
    Abstract: A method of forming a strengthened glass article is provided. The method includes providing a strengthened glass article. The strengthened glass article is in the form of a container including a sidewall having an exterior surface and an interior surface that encloses an interior volume. The sidewall has an exterior strengthened surface layer that includes the exterior surface, an interior strengthened surface layer that includes the interior surface and a central layer between the exterior strengthened surface layer and the interior strengthened surface layer that is under a tensile stress. A laser-induced intended line of separation is formed in the central layer at a predetermined depth between the exterior strengthened surface layer and the interior strengthened surface layer by irradiating the sidewall with a laser without separating the glass article.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: December 20, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Rebecca Vernon Higginbottom Dahlman, William James Miller, Katherine Rose Rossington, Alexander Mikhailovich Streltsov
  • Publication number: 20220397719
    Abstract: An article includes an optical transforming layer and a guide region positioned inside and adjacent to at least a portion of a perimeter of the optical transforming layer. The guide region comprises an inlet end positioned adjacent to a first surface of the optical transforming layer and an outlet end positioned adjacent a second surface of the optical transforming layer. The guide region propagates light from the inlet end to the outlet end such that the light is directed from the first surface to the second surface. The guide region includes a phase-separated glass comprising a continuous network phase and a discontinuous phase. A relative difference in index of refraction between the continuous network phase and the discontinuous phase is greater than or equal to 0.3%. The discontinuous phase comprises elongated shaped regions aligned along a common axis and having an aspect ratio greater than or equal to 10:1.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 15, 2022
    Inventors: Nicholas Francis Borrelli, Ming-Jun Li, Xiao Li, David John McEnroe, Robert Adam Modavis, Daniel Aloysius Nolan, Alranzo Boh Ruffin, Vitor Marino Schneider, Thomas Philip Seward, III, Alexander Mikhailovich Streltsov
  • Publication number: 20220276445
    Abstract: Methods for laser bonding optical elements to substrates and optical assemblies are disclosed. According to one embodiment, a method of bonding an optical element to a substrate includes disposing at least one optical element onto a surface of the substrate, electrostatically affixing the at least one optical element to the surface of the substrate, and directing a laser beam into the at least one optical element. The laser beam heats an interface between at least one optical element and the substrate to a temperature that is higher than a lowest temperature of the optical element change temperature and the substrate change temperature, thereby forming a bond between at least one optical element and the substrate at a bond area. The laser beam has a fluence that does not modify the substrate at areas of the substrate that are outside of the at least one optical element.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Inventors: David Mark Lance, Alexander Mikhailovich Streltsov
  • Patent number: 11426989
    Abstract: Methods of making a transparent glass-based article including at least two transparent glass-based substrates and a laser-induced bond therebetween. Methods include arranging the two transparent glass-based substrates relative to each other to form a contact area. Methods also include providing a laser beam contiguous the contact area to bond the two transparent glass-based substrates.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: August 30, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Stephan Lvovich Logunov, Alexander Mikhailovich Streltsov
  • Patent number: 11422310
    Abstract: Methods for laser welding one or more optical fibers to a substrate and assemblies are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate having at least one film layer on a surface of the substrate includes directing a laser beam into the optical fiber disposed on the at least one film layer. The optical fiber has a curved surface that focuses the laser beam to a focused diameter. The method further includes melting, using the focused diameter laser beam, a material of the substrate to create a laser bond area between the optical fiber and the surface of the substrate. The laser bond area includes laser-melted material of the substrate that bonds the optical fiber to the substrate. The at least one film layer has an absorption of at least 15% at a wavelength of the focused diameter laser beam.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: August 23, 2022
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 11247932
    Abstract: The liquid-assisted micromachining methods include methods of processing a substrate made of a transparent dielectric material. A working surface of the substrate is placed in contact with a liquid-assist medium that comprises fluorine. A focused pulsed laser beam is directed through a first substrate surface and through the opposite working surface to form a focus spot in the liquid-assist medium. The focus spot is then moved over a motion path from its initial position in the liquid-assist medium through the substrate body in the general direction from the working surface to the first surface to create a modification of the transparent dielectric material that defines in the body a core portion. The core portion is removed to form the substrate feature, which can be a through or closed fiber hole that supports one or more optical fibers. Optical components formed using the processed substrate are also disclosed.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: February 15, 2022
    Assignee: Corning Incorporated
    Inventors: Jeffery Alan DeMeritt, Davide Domenico Fortusini, Andrey Kobyakov, David Mark Lance, Leonard Thomas Masters, Ulrich Wilhelm Heinz Neukirch, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Patent number: 11247939
    Abstract: A glass article having a glass bump formed integrally thereon by laser-irradiation methods. The glass bump includes a lower region connected to an upper region by an inflection region. The lower region projects from a surface of the glass article and is defined by concavely rounded sides with a radius of curvature R1. The upper region includes a transition portion and a top portion. The transition portion is defined by convexly rounded sides with a radius of curvature R2. The transition portion connects to the lower portion via the inflection region. The upper portion connects to the transition portion and is defined by a convexly rounded top surface with a radius of curvature R3, which is greater than radius of curvature R2.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: February 15, 2022
    Assignee: Corning Incorporated
    Inventors: Leonard Thomas Masters, Alexander Mikhailovich Streltsov
  • Publication number: 20210363050
    Abstract: A method of cutting a glass sheet comprising a transparent oxide glass includes directing a laser beam from a middle-infrared (mid-IR) laser source onto a major surface of the glass sheet. A wavelength of the laser beam is tuned thereby adjusting an absorption depth of the laser beam in the glass sheet. The glass sheet is cut using the laser beam.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 25, 2021
    Inventors: Stephan Lvovich Logunov, Alexander Mikhailovich Streltsov
  • Publication number: 20210284572
    Abstract: A method of marking a glass-ceramic article includes the steps of: illuminating a glass-ceramic article with a beam from a laser, the glass-ceramic article having a thickness, T; and forming a mark in the glass-ceramic article while translating at least one of the glass-ceramic article or laser. The mark has a Contrast Ratio greater than 10. The step of forming a mark includes focusing the beam from the laser within the thickness, T, of the glass-ceramic article. The focusing of the beam results in alteration of a chemical property or a physical property of the glass-ceramic article. The mark produced by the beam from the laser extends through at least 50% of the thickness, T, of the glass-ceramic article. The glass-ceramic article may have a global temperature less than 100° C. during the marking process and does not fracture as the mark is formed.
    Type: Application
    Filed: February 24, 2021
    Publication date: September 16, 2021
    Inventors: Matthew John Dejneka, Jesse Kohl, Alexander Mikhailovich Streltsov
  • Publication number: 20210280817
    Abstract: In some embodiments, an apparatus comprises at least one module. Each module comprises a first substrate, and a second substrate disposed over the first substrate. The module has a periphery. The module includes an array of pixels disposed between the first substrate and the second substrate, and inside the periphery. Each pixel has an active area and an inactive area. The array of pixels a first intra-modular separation distance between the active area of adjacent pixels in a first direction. A laser weld hermetically seals the first substrate to the second substrate along a portion of the periphery. The laser weld is disposed between the active area of the pixels and the periphery. The distance between the active area of the pixels and the periphery in the first direction is not more than 50% of the first intra-modular separation distance. Methods of making the apparatus are also described.
    Type: Application
    Filed: August 15, 2017
    Publication date: September 9, 2021
    Applicant: Corning Incorporated
    Inventors: Stephan Lvovich LOGUNOV, James Edward McGINNIS, Mark Alejandro QUESADA, Alexander Mikhailovich STRELTSOV
  • Publication number: 20210220947
    Abstract: A laser-welded assembly of opposing sheets of ceramic and glass, ceramic, or glass-ceramic compositions comprises an intervening bonding layer having a thickness dimension that separates the opposing sheets by less than about 1000 nm. Each of the opposing sheets has a thickness dimension at least about 20 times the thickness dimension of the intervening bonding layer. The intervening bonding layer has a melting point greater than that of one or both of the opposing sheets. The ceramic sheet is a pass-through sheet with a composite T/R spectrum comprising a portion that lies below about 30% across a target irradiation band residing at or above about 1400 nm and at or below about 4500 nm wavelength. The intervening bonding layer has an absorption spectrum comprising a portion that lies above about 80% across the target irradiation band. The assembly comprises a weld bonding the opposing surfaces of the opposing sheets.
    Type: Application
    Filed: February 19, 2019
    Publication date: July 22, 2021
    Inventors: Michael Edward Badding, Leonard Charles Dabich, II, David Mark Lance, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20210197316
    Abstract: Disclosed herein are methods of bonding a multi-layer film to a substrate and resulting structures thereof. A method of laser bonding a multi-layer film to a substrate can include forming a film over a first surface of a first substrate that is transmissive to light at a first wavelength. The film may include a reflective layer that is reflective to light at the first wavelength and a refractive layer that is refractive to light at the first wavelength. The method may include irradiating a region of the film using laser radiation passing through the first substrate. A wavelength profile of the laser radiation can have a peak at about the first wavelength. The first wavelength can be between about 300 nm and about 5000 nm.
    Type: Application
    Filed: May 21, 2019
    Publication date: July 1, 2021
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 10954160
    Abstract: A sealed article and methods of making the same. The sealed article includes a first and second glass pane. The first and second glass panes include inner surfaces opposite outer surfaces and at least one outer edge. The second glass pane is spaced apart from and positioned substantially parallel to the first glass pane with a low emissivity layer there between. An seal is formed between the first and second glass panes contiguous the low emissivity layer.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: March 23, 2021
    Assignee: Corning Incorporated
    Inventors: Alexander Mikhailovich Streltsov, John Christopher Thomas
  • Patent number: 10858283
    Abstract: An apparatus including a first substrate, a second substrate, an inorganic film provided between the first substrate and the second substrate and in contact with both the first substrate and the second substrate, a laser welded zone formed between the first and second substrate by the inorganic film, where the laser welded zone has a heat affected zone (HAZ), where the HAZ is defined as a region in which ?HAZ is at least 1 MPa higher than average stress in the first substrate and the second substrate, wherein ?HAZ is compressive stress in the HAZ, and wherein the laser welded zone is characterized by its ?interface laser weld>?HAZ, wherein ?interface laser weld is peak value of compressive stress in the laser welded zone.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: December 8, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Stephan Lvovich Logunov, Yousef Kayed Qaroush, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Leo Young Zheng
  • Publication number: 20200369566
    Abstract: Methods for laser welding one or more optical fibers to a substrate and assemblies are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate having at least one film layer on a surface of the substrate includes directing a laser beam into the optical fiber disposed on the at least one film layer. The optical fiber has a curved surface that focuses the laser beam to a focused diameter. The method further includes melting, using the focused diameter laser beam, a material of the substrate to create a laser bond area between the optical fiber and the surface of the substrate. The laser bond area includes laser-melted material of the substrate that bonds the optical fiber to the substrate. The at least one film layer has an absorption of at least 15% at a wavelength of the focused diameter laser beam.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 26, 2020
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov