Patents by Inventor Alexander Mikhailovich Streltsov

Alexander Mikhailovich Streltsov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10358386
    Abstract: Methods of forming a sheet glass product comprising a plurality of growth-limited glass bump spacers. According to the methods, a glass pane of the sheet glass product is irradiated with laser radiation to locally heat the glass pane at a plurality of spacer localities and induce growth of a plurality of glass bump spacers in the glass pane. The growth of the plurality of glass bump spacers is limited by utilizing a growth-limiting plate comprising a scattering surface portion. The scattering surface portion of the growth-limiting plate mitigates damage to the growth-limiting plate and may also mitigate damage to the glass pane. Vacuum insulated glass products and systems for forming a growth-limited sheet glass product are also provided.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: July 23, 2019
    Assignee: Corning Incorporated
    Inventors: Richard Robert Grzybowski, Daniel Ralph Harvey, Alexander Mikhailovich Streltsov
  • Publication number: 20190218142
    Abstract: An apparatus including a first substrate, a second substrate, an inorganic film provided between the first substrate and the second substrate and in contact with both the first substrate and the second substrate, a laser welded zone formed between the first and second substrate by the inorganic film, where the laser welded zone has a heat affected zone (HAZ), where the HAZ is defined as a region in which ?HAZ is at least 1 MPa higher than average stress in the first substrate and the second substrate, wherein ?HAZ is compressive stress in the HAZ, and wherein the laser welded zone is characterized by its ?interface laser weld>?HAZ, wherein ?interface laser weld is peak value of compressive stress in the laser welded zone.
    Type: Application
    Filed: November 2, 2018
    Publication date: July 18, 2019
    Inventors: Stephan Lvovich Logunov, Yousef Kayed Qaroush, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Leo Young Zheng
  • Patent number: 10345533
    Abstract: Assemblies, optical connectors, and methods for bonding optical fibers to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate includes directing a laser beam into the optical fiber disposed on a surface of the substrate, wherein the optical fiber has a curved surface and the curved surface of the optical fiber focuses the laser beam to a diameter that is smaller than a diameter of the laser beam as it enters the optical fiber. The method further includes melting, using the laser beam, a material of the substrate at a bond area between the optical fiber and the surface of the substrate such that the optical fiber is bonded to the surface of the substrate.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: July 9, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Douglas Llewellyn Butler, James Scott Sutherland
  • Patent number: 10297787
    Abstract: Disclosed herein are methods for welding a first substrate and a second substrate, the method comprising bringing the first and second substrates into contact to form a substrate interface, and directing a laser beam operating at a predetermined wavelength through the second substrate onto the substrate interface, wherein the first substrate absorbs light from the laser beam in an amount sufficient to form a weld between the first substrate and the second substrate. The disclosure also relates to glass and/or glass-ceramic packaging and OLED display produced according to the methods disclosed herein.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: May 21, 2019
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Alexander Mikhailovich Streltsov
  • Publication number: 20190135678
    Abstract: Disclosed herein are transparent articles and methods and systems for processing transparent articles. Systems for processing transparent articles, e.g. cutting glass, may include at least one initial laser and at least one polarizing beam splitter, where the polarizing beam splitter is configured to split an initial laser beam into a plurality of laser beams, and wherein the plurality of laser beams are useful for processing transparent articles. Methods for processing transparent articles comprise creating at least one flaw in the transparent articles with a plurality of laser beams.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 9, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Anping LIU, Leonard Thomas MASTERS, Alexander Mikhailovich STRELTSOV
  • Patent number: 10283731
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: May 7, 2019
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20190074476
    Abstract: Disclosed herein are sealed devices comprising a first substrate, a second substrate, an inorganic film between the first and second substrates, and at least one weld region comprising a bond between the first and second substrates. The weld region can comprise a chemical composition different from that of the inorganic film and the first or second substrates. The sealed devices may further comprise a stress region encompassing at least the weld region, in which a portion of the device is under a greater stress than the remaining portion of the device. Also disclosed herein are display and electronic components comprising such sealed devices.
    Type: Application
    Filed: March 8, 2017
    Publication date: March 7, 2019
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20190047902
    Abstract: Disclosed herein are sealed devices comprising a first substrate, a second substrate, an inorganic film between the first and second substrates, and at least one bond between the first and second substrates. The inorganic film can comprise about 10-80 mol % B2O3, about 5-60 mol % Bi2O3, and about 0-70 mol % ZnO. Methods for sealing devices using such an inorganic film are also disclosed herein, as well as display and electronic components comprising such sealed devices.
    Type: Application
    Filed: March 16, 2017
    Publication date: February 14, 2019
    Inventors: Heather Debra Boek, Nadja Teresia Lonnroth, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Mark Owen Weller
  • Publication number: 20180351130
    Abstract: A laser weldable device housing substrate, device housing and related method are provided. The substrate includes a first surface, a second surface opposite the first surface, and a thin inorganic particle layer supported by the first surface. The inorganic particle layer includes a plurality of particles arranged in a layer on the first surface. The particles have an average diameter of less than or equal to 1.0 ?m, and the inorganic particle layer has an average thickness of less than or equal to 5 ?m.
    Type: Application
    Filed: November 22, 2016
    Publication date: December 6, 2018
    Inventors: Heather Debra Boek, Theresa Chang, Leonard Charles Dabich, Mark Alan Lewis, Stephan Lvovich Logunov, Mark Alejandro Quesada, Wageesha Senaratne, Alexander Mikhailovich Streltsov
  • Patent number: 10069104
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 4, 2018
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20180237337
    Abstract: Disclosed herein are sealed devices comprising at least one cavity containing at least one quantum dot or at least one laser diode are also disclosed herein. The sealed devices can comprise a glass substrate sealed to an inorganic substrate, optionally via a sealing layer, the seal extending around the at least one cavity. Display and optical devices comprising such sealed devices are also disclosed herein, as well as methods for making such sealed devices.
    Type: Application
    Filed: August 11, 2016
    Publication date: August 23, 2018
    Inventors: James Gregory Couillard, David Francis Dawson-Elli, Stephan Lovovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Leonard Gerard Wamboldt
  • Publication number: 20180172905
    Abstract: The optical-electrical interconnection device comprises a glass support member with front-end and back-end portions that define a plane and an aperture. A cantilever member extends from the back-end portion into the aperture. The cantilever member supports an interconnection optical waveguide. The cantilever member comprises a bend region that causes a front-end section of the cantilever member to extend out of the plane. The front-end section is flexible, which allows for the interconnection optical waveguide to be aligned and optically coupled to a device waveguide of an optical-electrical device. A photonic assembly is formed using the optical-electrical interconnection device and at least one optical-electrical device. Methods of forming optical and electrical interconnections using the optical-electrical interconnection device are also disclosed.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 21, 2018
    Inventors: Davide Domenico Fortusini, Scott Christopher Pollard, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Publication number: 20180138445
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Application
    Filed: July 20, 2017
    Publication date: May 17, 2018
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20180138446
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Application
    Filed: September 8, 2017
    Publication date: May 17, 2018
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20170327419
    Abstract: A method of forming a sealed device comprising providing a first substrate having a first surface, providing a second substrate adjacent the first substrate, and forming a weld between an interface of the first substrate and the adjacent second substrate, wherein the weld is characterized by ((?tensile stress location)/(?interface laser weld))<<1 or <1 and ?interface laser weld>10 MPa or >1 MPa where ?tensile stress location is the stress present in the first substrate and ?interface laser weld is the stress present at the interface. This method may be used to manufacture a variety of different sealed packages.
    Type: Application
    Filed: October 29, 2015
    Publication date: November 16, 2017
    Inventors: Heather Debra Boek, Leonard Charles Dabich, II, David Alan Deneka, Jin Su Kim, Shari Elizabeth Koval, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 9802855
    Abstract: A method of fabricating a high-density array of holes in glass is provided, comprising providing a glass piece having a front surface, then irradiating the front surface of the glass piece with a UV laser beam focused to a focal point within +/?100 ?m of the front surface of the glass piece most desirably within +/?50 ?m of the front surface. The lens focusing the laser has a numerical aperture desirably in the range of from 0.1 to 0.4, more desirably in the range of from 0.1 to 0.15 for glass thickness between 0.3 mm and 0.63 mm, even more desirably in the range of from 0.12 to 0.13, so as to produce open holes extending into the glass piece 100 from the front surface 102 of the glass piece, the holes having an diameter the in range of from 5 to 15 ?m, and an aspect ratio of at least 20:1. For thinner glass, in the range of from 0.1-0.3 mm, the numerical aperture is desirably from 0.25 to 0.4, more desirably from 0.25 to 0.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: October 31, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Heather Debra Boek, Robert Carl Burket, Daniel Ralph Harvey, Alexander Mikhailovich Streltsov
  • Publication number: 20170279247
    Abstract: Disclosed herein are sealed devices comprising a first glass substrate; a second glass substrate; an optional sealing layer between the first and second glass substrates; and at least one seal between the first and second glass substrates. The sealed devices may comprise at least one cavity containing at least one component chosen from laser diodes, light emitting diodes, organic light emitting diodes, quantum dots, and combinations thereof. Also disclosed herein are display devices comprising such sealed devices and methods for making sealed devices.
    Type: Application
    Filed: August 21, 2015
    Publication date: September 28, 2017
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 9761828
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: September 12, 2017
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 9741963
    Abstract: Disclosed herein are sealed devices comprising a first substrate, a second substrate, an inorganic film between the first and second substrates, and at least one weld region comprising a bond between the first and second substrates. The weld region can comprise a chemical composition different from that of the inorganic film and the first or second substrates. The sealed devices may further comprise a stress region encompassing at least the weld region, in which a portion of the device is under a greater stress than the remaining portion of the device. Also disclosed herein are display and electronic components comprising such sealed devices.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: August 22, 2017
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 9714194
    Abstract: A method for controlling formation of glass bumps in a glass article with laser-irradiation without the use of a growth-limiting structure. Standard deviation of height between the glass bumps on the article is less than 1 micron by controlling the laser radiation dose provided on the glass article.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: July 25, 2017
    Assignee: Corning Incorporated
    Inventors: Leonard Thomas Masters, Alexander Mikhailovich Streltsov