Patents by Inventor Alexander Sztein

Alexander Sztein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10141714
    Abstract: A plurality of dies includes a gallium and nitrogen containing substrate having a surface region and an epitaxial material formed overlying the surface region. The epitaxial material includes an n-type cladding region, an active region having at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active region. The epitaxial material is patterned to form the plurality of dies on the surface region, the dies corresponding to a laser device. Each of the plurality of dies includes a release region composed of a material with a smaller bandgap than an adjacent epitaxial material. A lateral width of the release region is narrower than a lateral width of immediately adjacent layers above and below the release region to form undercut regions bounding each side of the release region. Each die also includes a passivation region extending along sidewalls of the active region.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 27, 2018
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Alexander Sztein, Melvin McLaurin, Po Shan Hsu, James W. Raring
  • Patent number: 10044170
    Abstract: In an example, the present invention provides a gallium and nitrogen containing multilayered structure, and related method. The structure has a plurality of gallium and nitrogen containing semiconductor substrates, each of the gallium and nitrogen containing semiconductor substrates (“substrates”) having a plurality of epitaxially grown layers overlaying a top-side of each of the substrates. The structure has an orientation of a reference crystal direction for each of the substrates. The structure has a first handle substrate coupled to each of the substrates such that each of the substrates is aligned to a spatial region configured in a selected direction of the first handle substrate, which has a larger spatial region than a sum of a total backside region of plurality of the substrates to be arranged in a tiled configuration overlying the first handle substrate. The reference crystal direction for each of the substrates is parallel to the spatial region in the selected direction within 10 degrees or less.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: August 7, 2018
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, James W. Raring
  • Patent number: 10002928
    Abstract: A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: June 19, 2018
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Melvin McLaurin, Alexander Sztein, Po Shan Hsu
  • Publication number: 20180159302
    Abstract: A multi-wavelength light emitting device is manufactured by forming first and second epitaxial materials overlying first and second surface regions. The first and second epitaxial materials are patterned to form a plurality of first and second epitaxial dice. At least one of the first plurality of epitaxial dice and at least one of the second plurality of epitaxial dice are transferred from first and second substrates, respectively, to a carrier wafer by selectively etching a release region, separating from the substrate each of the epitaxial dice that are being transferred, and selectively bonding to the carrier wafer each of the epitaxial dice that are being transferred. The transferred first and second epitaxial dice are processed on the carrier wafer to form a plurality of light emitting devices capable of emitting at least a first wavelength and a second wavelength.
    Type: Application
    Filed: November 21, 2017
    Publication date: June 7, 2018
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, Eric Goutain, James W. Raring, Paul Rudy, Vlad Novotny
  • Patent number: 9882353
    Abstract: A method for fabricating a laser diode device includes providing a gallium and nitrogen containing substrate member having a surface region, forming a patterned dielectric material overlying the surface region to expose a portion of the surface region within a vicinity of an recessed region of the patterned dielectric material and maintaining an upper portion of the patterned dielectric material overlying covered portions of the surface region, and performing a lateral epitaxial growth overlying the exposed portion of the surface region to fill the recessed region and causing a thickness of the lateral epitaxial growth to be formed overlying the upper portion of the patterned dielectric material. The method also includes forming an n-type gallium and nitrogen containing material, forming an active region, and forming a p-type gallium and nitrogen containing material. The method further includes forming a waveguide structure in the p-type gallium and nitrogen containing material.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: January 30, 2018
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Po Shan Hsu, Melvin McLaurin, James W. Raring, Alexander Sztein, Benyamin Buller
  • Patent number: 9871350
    Abstract: A multi-wavelength light emitting device is manufactured by forming first and second epitaxial materials overlying first and second surface regions. The first and second epitaxial materials are patterned to form a plurality of first and second epitaxial dice. At least one of the first plurality of epitaxial dice and at least one of the second plurality of epitaxial dice are transferred from first and second substrates, respectively, to a carrier wafer by selectively etching a release region, separating from the substrate each of the epitaxial dice that are being transferred, and selectively bonding to the carrier wafer each of the epitaxial dice that are being transferred. The transferred first and second epitaxial dice are processed on the carrier wafer to form a plurality of light emitting devices capable of emitting at least a first wavelength and a second wavelength.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: January 16, 2018
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, Eric Goutain, James W. Raring, Paul Rudy, Vlad Novotny
  • Publication number: 20180013265
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Application
    Filed: September 1, 2017
    Publication date: January 11, 2018
    Inventors: Melvin McLaurin, James W. Raring, Alexander Sztein, Po Shan Hsu
  • Publication number: 20170365975
    Abstract: A plurality of dies includes a gallium and nitrogen containing substrate having a surface region and an epitaxial material formed overlying the surface region. The epitaxial material includes an n-type cladding region, an active region having at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active region. The epitaxial material is patterned to form the plurality of dies on the surface region, the dies corresponding to a laser device. Each of the plurality of dies includes a release region composed of a material with a smaller bandgap than an adjacent epitaxial material. A lateral width of the release region is narrower than a lateral width of immediately adjacent layers above and below the release region to form undercut regions bounding each side of the release region. Each die also includes a passivation region extending along sidewalls of the active region.
    Type: Application
    Filed: August 11, 2017
    Publication date: December 21, 2017
    Inventors: Alexander Sztein, Melvin McLaurin, Po Shan Hsu, James W. Raring
  • Patent number: 9774170
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: September 26, 2017
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, James W. Raring, Alexander Sztein, Po Shan Hsu
  • Patent number: 9762032
    Abstract: In an example, the present invention provides a gallium and nitrogen containing multilayered structure, and related method. The structure has a plurality of gallium and nitrogen containing semiconductor substrates, each of the gallium and nitrogen containing semiconductor substrates (“substrates”) having a plurality of epitaxially grown layers overlaying a top-side of each of the substrates. The structure has an orientation of a reference crystal direction for each of the substrates. The structure has a first handle substrate coupled to each of the substrates such that each of the substrates is aligned to a spatial region configured in a selected direction of the first handle substrate, which has a larger spatial region than a sum of a total backside region of plurality of the substrates to be arranged in a tiled configuration overlying the first handle substrate. The reference crystal direction for each of the substrates is parallel to the spatial region in the selected direction within 10 degrees or less.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: September 12, 2017
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, James W. Raring
  • Patent number: 9755398
    Abstract: In an example, the present invention provides a method for manufacturing a gallium and nitrogen containing laser diode device. The method includes providing a gallium and nitrogen containing substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising of at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The method includes patterning the epitaxial material to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. The method includes transferring each of the plurality of dice to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch corresponding to the design width.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: September 5, 2017
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Alexander Sztein, Melvin McLaurin, Po Shan Hsu, James W. Raring
  • Patent number: 9711949
    Abstract: A method for fabricating a laser diode device includes providing a gallium and nitrogen containing substrate member comprising a surface region, a release material overlying the surface region, an n-type gallium and nitrogen containing material; an active region overlying the n-type gallium and nitrogen containing material, a p-type gallium and nitrogen containing material; and a first transparent conductive oxide material overlying the p-type gallium and nitrogen containing material, and an interface region overlying the first transparent conductive oxide material. The method includes bonding the interface region to a handle substrate and subjecting the release material to an energy source to initiate release of the gallium and nitrogen containing substrate member.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 18, 2017
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Melvin McLaurin, Paul Rudy, Po Shan Hsu, Alexander Sztein
  • Patent number: 9666677
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: May 30, 2017
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Melvin McLaurin, Alexander Sztein, Po Shan Hsu
  • Patent number: 9653642
    Abstract: A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: May 16, 2017
    Assignee: SORAA LASER DIODE, INC.
    Inventors: James W. Raring, Melvin McLaurin, Alexander Sztein, Po Shan Hsu
  • Publication number: 20170077677
    Abstract: A method for fabricating a laser diode device includes providing a gallium and nitrogen containing substrate member having a surface region, forming a patterned dielectric material overlying the surface region to expose a portion of the surface region within a vicinity of an recessed region of the patterned dielectric material and maintaining an upper portion of the patterned dielectric material overlying covered portions of the surface region, and performing a lateral epitaxial growth overlying the exposed portion of the surface region to fill the recessed region and causing a thickness of the lateral epitaxial growth to be formed overlying the upper portion of the patterned dielectric material. The method also includes forming an n-type gallium and nitrogen containing material, forming an active region, and forming a p-type gallium and nitrogen containing material. The method further includes forming a waveguide structure in the p-type gallium and nitrogen containing material.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 16, 2017
    Applicant: Soraa Laser Diode, Inc.
    Inventors: Po Shan Hsu, Melvin McLaurin, James W. Raring, Alexander Sztein, Benyamin Buller
  • Publication number: 20170063047
    Abstract: A multi-emitter laser diode device includes a carrier chip singulated from a carrier wafer. The carrier chip has a length and a width, and the width defines a first pitch. The device also includes a plurality of epitaxial mesa dice regions transferred to the carrier chip from a substrate and attached to the carrier chip at a bond region. Each of the epitaxial mesa dice regions is arranged on the carrier chip in a substantially parallel configuration and positioned at a second pitch defining the distance between adjacent epitaxial mesa dice regions. Each of the plurality of epitaxial mesa dice regions includes epitaxial material, which includes an n-type cladding region, an active region having at least one active layer region, and a p-type cladding region. The device also includes one or more laser diode stripe regions, each of which has a pair of facets forming a cavity region.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Applicant: Soraa Laser Diode, Inc.
    Inventors: Dan Steigerwald, Melvin McLaurin, Eric Goutain, Alexander Sztein, Po Shan Hsu, Paul Rudy, James W. Raring
  • Publication number: 20170063045
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Application
    Filed: June 9, 2016
    Publication date: March 2, 2017
    Inventors: Melvin McLaurin, James W. Raring, Alexander Sztein, Po Shan Hsu
  • Publication number: 20160372893
    Abstract: A multi-wavelength light emitting device is manufactured by forming first and second epitaxial materials overlying first and second surface regions. The first and second epitaxial materials are patterned to form a plurality of first and second epitaxial dice. At least one of the first plurality of epitaxial dice and at least one of the second plurality of epitaxial dice are transferred from first and second substrates, respectively, to a carrier wafer by selectively etching a release region, separating from the substrate each of the epitaxial dice that are being transferred, and selectively bonding to the carrier wafer each of the epitaxial dice that are being transferred. The transferred first and second epitaxial dice are processed on the carrier wafer to form a plurality of light emitting devices capable of emitting at least a first wavelength and a second wavelength.
    Type: Application
    Filed: June 13, 2016
    Publication date: December 22, 2016
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, Eric Goutain, James W. Raring, Paul Rudy, Vlad Novotny
  • Patent number: 9520697
    Abstract: A method for manufacturing a multi-emitter laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: December 13, 2016
    Assignee: SORAA LASER DIODE, INC.
    Inventors: Dan Steigerwald, Melvin McLaurin, Eric Goutain, Alexander Sztein, Po Shan Hsu, Paul Rudy, James W. Raring
  • Publication number: 20160359294
    Abstract: In an example, the present invention provides a method for manufacturing a gallium and nitrogen containing laser diode device. The method includes providing a gallium and nitrogen containing substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising of at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The method includes patterning the epitaxial material to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. The method includes transferring each of the plurality of dice to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch corresponding to the design width.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 8, 2016
    Inventors: Alexander Sztein, MELVIN MCLAURIN, PO SHAN HSU, JAMES W. RARING