Patents by Inventor Alexander Sztein

Alexander Sztein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160294162
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 6, 2016
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, Eric Goutain, Dan Steigerwald, James W. Raring
  • Patent number: 9401584
    Abstract: In an example, the present invention provides a gallium and nitrogen containing multilayered structure, and related method. The structure has a plurality of gallium and nitrogen containing semiconductor substrates, each of the gallium and nitrogen containing semiconductor substrates (“substrates”) having a plurality of epitaxially grown layers overlaying a top-side of each of the substrates. The structure has an orientation of a reference crystal direction for each of the substrates. The structure has a first handle substrate coupled to each of the substrates such that each of the substrates is aligned to a spatial region configured in a selected direction of the first handle substrate, which has a larger spatial region than a sum of a total backside region of plurality of the substrates to be arranged in a tiled configuration overlying the first handle substrate. The reference crystal direction for each of the substrates is parallel to the spatial region in the selected direction within 10 degrees or less.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: July 26, 2016
    Assignee: SORAA LASER DIODE, INC.
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, James W. Raring
  • Patent number: 9379525
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: June 28, 2016
    Assignee: SORAA LASER DIODE, INC.
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, Eric Goutain, Dan Steigerwald, James W. Raring
  • Patent number: 9368939
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: June 14, 2016
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, James W. Raring, Alexander Sztein, Po Shan Hsu
  • Patent number: 9362715
    Abstract: In an example, the present invention provides a method for manufacturing a gallium and nitrogen containing laser diode device. The method includes providing a gallium and nitrogen containing substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising of at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The method includes patterning the epitaxial material to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. The method includes transferring each of the plurality of dice to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch corresponding to the design width.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: June 7, 2016
    Assignee: Soraa Laser Diode, Inc
    Inventors: Alexander Sztein, Melvin McLaurin, Po Shan Hsu, James W. Raring
  • Patent number: 9246311
    Abstract: A method for fabricating a laser diode device includes providing a gallium and nitrogen containing substrate member comprising a surface region, a release material overlying the surface region, an n-type gallium and nitrogen containing material; an active region overlying the n-type gallium and nitrogen containing material, a p-type gallium and nitrogen containing material; and a first transparent conductive oxide material overlying the p-type gallium and nitrogen containing material, and an interface region overlying the first transparent conductive oxide material. The method includes bonding the interface region to a handle substrate and subjecting the release material to an energy source to initiate release of the gallium and nitrogen containing substrate member.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: January 26, 2016
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Melvin McLaurin, Paul Rudy, Po Shan Hsu, Alexander Sztein
  • Patent number: 9209596
    Abstract: In an example, the present invention provides a gallium and nitrogen containing multilayered structure, and related method. The structure has a plurality of gallium and nitrogen containing semiconductor substrates, each of the gallium and nitrogen containing semiconductor substrates (“substrates”) having a plurality of epitaxially grown layers overlaying a top-side of each of the substrates. The structure has an orientation of a reference crystal direction for each of the substrates. The structure has a first handle substrate coupled to each of the substrates such that each of the substrates is aligned to a spatial region configured in a selected direction of the first handle substrate, which has a larger spatial region than a sum of a total backside region of plurality of the substrates to be arranged in a tiled configuration overlying the first handle substrate. The reference crystal direction for each of the substrates is parallel to the spatial region in the selected direction within 10 degrees or less.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: December 8, 2015
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, James W. Raring
  • Publication number: 20150229100
    Abstract: In an example, the present invention provides a method for manufacturing a gallium and nitrogen containing laser diode device. The method includes providing a gallium and nitrogen containing substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising of at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The method includes patterning the epitaxial material to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. The method includes transferring each of the plurality of dice to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch corresponding to the design width.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 13, 2015
    Applicant: Soraa Laser Diode, Inc.
    Inventors: Alexander Sztein, Melvin McLaurin, Po Shan Hsu, James W. Raring
  • Publication number: 20150229107
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Application
    Filed: June 23, 2014
    Publication date: August 13, 2015
    Inventors: Melvin McLaurin, Alexander Sztein, Po Shan Hsu, Eric Goutain, Dan Steigerwald, James W. Raring
  • Publication number: 20150229108
    Abstract: A method for manufacturing a multi-emitter laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Application
    Filed: January 20, 2015
    Publication date: August 13, 2015
    Inventors: Dan Steigerwald, Melvin McLaurin, Eric Goutain, Alexander Sztein, Po Shan Hsu, Paul Rudy, James W. Raring
  • Publication number: 20150140710
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Application
    Filed: December 3, 2014
    Publication date: May 21, 2015
    Inventors: Melvin McLaurin, James W. Raring, Alexander Sztein, Po Shan Hsu
  • Publication number: 20140318592
    Abstract: A method for enhancement of thermoelectric properties through polarization engineering. Internal electric fields created within a material are used to spatially confine electrons for the purpose of enhancing thermoelectric properties. Electric fields can be induced within a material by the presence of bound charges at interfaces. A combination of spontaneous and piezoelectric polarization can induce this interfacial charge. The fields created by these bound charges have the effect of confining charge carriers near these interfaces. By confining charge carriers to a channel where scattering centers can be deliberately excluded the electron mobility can be enhanced, thus enhancing thermoelectric power factor. Simultaneously, phonons will not be affected by the fields and thus will be subject to the many scattering centers present in the majority of the structure. This allows for simultaneous enhancement of power factor and reduction of thermal conductivity, thus improving the thermoelectric figure of merit, ZT.
    Type: Application
    Filed: December 14, 2012
    Publication date: October 30, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander Sztein, John E. Bowers, Steven P. DenBaars
  • Patent number: 8692105
    Abstract: A method to suppress thermal conductivities of nitride films by using stacking faults and/or nano-scale In-composition fluctuation(s). Therefore, the present invention reduces thermal conductivity of nitride while keeping electrical conductivity high. In addition, In composition fluctuations can enhance the Seebeck coefficient through thermionic emission. The present invention further discloses a nitride based (e.g. GaN) thermoelectric lateral device with a short length.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: April 8, 2014
    Assignee: The Regents of the University of California
    Inventors: Hiroaki Ohta, Alexander Sztein, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20110253187
    Abstract: A method to suppress thermal conductivities of nitride films by using stacking faults and/or nano-scale In-composition fluctuation(s). Therefore, the present invention reduces thermal conductivity of nitride while keeping electrical conductivity high. In addition, In composition fluctuations can enhance the Seebeck coefficient through thermionic emission. The present invention further discloses a nitride based (e.g. GaN) thermoelectric lateral device with a short length.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 20, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hiroaki Ohta, Alexander Sztein, Steven P. DenBaars, Shuji Nakamura