Patents by Inventor Alexander Tam

Alexander Tam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11302520
    Abstract: Implementations of the disclosure generally provide an improved pedestal heater for a processing chamber. The pedestal heater includes a temperature-controlled plate having a first surface and a second surface opposing the first surface. The temperature-controlled plate includes an inner zone comprising a first set of heating elements, an outer zone comprising a second set of heating elements, the outer zone surrounding the inner zone, and a continuous thermal choke disposed between the inner zone and the outer zone, and a substrate receiving plate having a first surface and a second surface opposing the first surface, the second surface of the substrate receiving plate is coupled to the first surface of the temperature-controlled plate. The continuous thermal choke enables a very small temperature gradient to be created and manipulated between the inner zone and the outer zone, allowing center-fast or edge-fast etching profile to achieve on a surface of the substrate.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: April 12, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tien Fak Tan, Dmitry Lubomirsky, Kirby H. Floyd, Son T. Nguyen, David Palagashvili, Alexander Tam, Shaofeng Chen
  • Patent number: 10811232
    Abstract: Embodiments of the disclosure relate to a multi-plate faceplate having a first plate and a second plate. The first plate has a plurality of first plate openings. The second plate has a first surface, an opposed second surface and a plurality of second plate openings extending therethrough. The first surface is mechanically coupled to the first plate. A second plate opening has a conical portion configured to be fluidly coupled to a first plate opening and decreasing in cross-section in the depth direction thereof from the second surface. A surface of the conical portion is coated with a protective coating adjacent to the first and second surfaces. In another embodiment, the first plate has a protrusion extending therefrom into a recess formed inwardly of the first surface. The protrusion has a passage extending therethrough fluidly connected to the recess, which is fluidly connected to the second plate opening.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: October 20, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Deepak Doddabelavangala Srikantaiah, Sheshraj L. Tulshibagwale, Saravjeet Singh, Alexander Tam
  • Publication number: 20190304756
    Abstract: Systems and methods may be used to produce coated components. Exemplary chamber components may include an aluminum, stainless steel, or nickel plate defining a plurality of apertures. The plate may include a hybrid coating, and the hybrid coating may include a first layer comprising a corrosion resistant coating. The first layer may extend conformally through each aperture of the plurality of apertures. The hybrid coating may also include a second layer comprising an erosion resistant coating extending across a plasma-facing surface of the semiconductor chamber component.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 3, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Laksheswar Kalita, Soonam Park, Toan Q. Tran, Lili Ji, Dmitry Lubomirsky, Akhil Devarakonda, Tien Fak Tan, Tae Won Kim, Saravjeet Singh, Alexander Tam, Jingchun Zhang, Jing J. Zhang
  • Publication number: 20190051499
    Abstract: Embodiments of the disclosure relate to a multi-plate faceplate having a first plate and a second plate. The first plate has a plurality of first plate openings. The second plate has a first surface, an opposed second surface and a plurality of second plate openings extending therethrough. The first surface is mechanically coupled to the first plate. A second plate opening has a conical portion configured to be fluidly coupled to a first plate opening and decreasing in cross-section in the depth direction thereof from the second surface. A surface of the conical portion is coated with a protective coating adjacent to the first and second surfaces. In another embodiment, the first plate has a protrusion extending therefrom into a recess formed inwardly of the first surface. The protrusion has a passage extending therethrough fluidly connected to the recess, which is fluidly connected to the second plate opening.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: Deepak Doddabelavangala SRIKANTAIAH, Sheshraj L. TULSHIBAGWALE, Saravjeet SINGH, Alexander TAM
  • Patent number: 10130958
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. The apparatus includes a showerhead assembly with separate inlets and manifolds for delivering separate processing gases into a processing volume of the chamber without mixing the gases prior to entering the processing volume. The showerhead includes a plurality of gas distribution devices disposed within a plurality of gas inlets for injecting one of the processing gases into and distributing it across a manifold for uniform delivery into the processing volume of the chamber. Each of the gas distribution devices preferably has a nozzle configured to evenly distribute the processing gas flowing therethrough while minimizing recirculation of the processing gas within the manifold. As a result, improved deposition uniformity is achieved on a plurality of substrates positioned in the processing volume of the processing chamber.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: November 20, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Alexander Tam, Anzhong Chang, Sumedh Acharya
  • Patent number: 10062587
    Abstract: Substrate support assemblies for a semiconductor processing apparatus are described. The assemblies may include a pedestal and a stem coupled with the pedestal. The pedestal may be configured to provide multiple regions having independently controlled temperatures. Each region may include a fluid channel to provide a substantially uniform temperature control within the region, by circulating a temperature controlled fluid that is received from and delivered to internal channels in the stem. The fluid channels may include multiple portions configured in a parallel-reverse flow arrangement. The pedestal may also include fluid purge channels that may be configured to provide thermal isolation between the regions of the pedestal.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: August 28, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Xinglong Chen, Jang-Gyoo Yang, Alexander Tam, Elisha Tam
  • Patent number: 9892941
    Abstract: Apparatus, reactors, and methods for heating substrates are disclosed. The apparatus comprises a stage comprising a body and a surface having an area to support a substrate, a shaft coupled to the stage, a first heating element disposed within a central region of the body of the stage, and at least second and third heating elements disposed within the body of the stage, the at least second and third heating elements each partially surrounding the first heating element and wherein the at least second and third heating elements are circumferentially adjacent to each other.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: February 13, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Anqing Cui, Binh Tran, Alexander Tam, Jacob W. Smith, R. Suryanarayanan Iyer, Joseph Yudovsky, Sean M. Seutter
  • Patent number: 9644267
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: May 9, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Brian H. Burrows, Alexander Tam, Ronald Stevens, Kenric T. Choi, James David Felsch, Jacob Grayson, Sumedh Acharya, Sandeep Nijhawan, Lori D. Washington, Nyi O. Myo
  • Publication number: 20160126118
    Abstract: Substrate support assemblies for a semiconductor processing apparatus are described. The assemblies may include a pedestal and a stem coupled with the pedestal. The pedestal may be configured to provide multiple regions having independently controlled temperatures. Each region may include a fluid channel to provide a substantially uniform temperature control within the region, by circulating a temperature controlled fluid that is received from and delivered to internal channels in the stem. The fluid channels may include multiple portions configured in a parallel-reverse flow arrangement. The pedestal may also include fluid purge channels that may be configured to provide thermal isolation between the regions of the pedestal.
    Type: Application
    Filed: January 15, 2016
    Publication date: May 5, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Xinglong Chen, Jang-Gyoo Yang, Alexander Tam, Elisha Tam
  • Patent number: 9267739
    Abstract: Substrate support assemblies for a semiconductor processing apparatus are described. The assemblies may include a pedestal and a stem coupled with the pedestal. The pedestal may be configured to provide multiple regions having independently controlled temperatures. Each region may include a fluid channel to provide a substantially uniform temperature control within the region, by circulating a temperature controlled fluid that is received from and delivered to internal channels in the stem. The fluid channels may include multiple portions configured in a parallel-reverse flow arrangement. The pedestal may also include fluid purge channels that may be configured to provide thermal isolation between the regions of the pedestal.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 23, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Xinglong Chen, Jang-Gyoo Yang, Alexander Tam, Elisha Tam
  • Publication number: 20150380220
    Abstract: Implementations of the disclosure generally provide an improved pedestal heater for a processing chamber. The pedestal heater includes a temperature-controlled plate having a first surface and a second surface opposing the first surface. The temperature-controlled plate includes an inner zone comprising a first set of heating elements, an outer zone comprising a second set of heating elements, the outer zone surrounding the inner zone, and a continuous thermal choke disposed between the inner zone and the outer zone, and a substrate receiving plate having a first surface and a second surface opposing the first surface, the second surface of the substrate receiving plate is coupled to the first surface of the temperature-controlled plate. The continuous thermal choke enables a very small temperature gradient to be created and manipulated between the inner zone and the outer zone, allowing center-fast or edge-fast etching profile to achieve on a surface of the substrate.
    Type: Application
    Filed: June 23, 2015
    Publication date: December 31, 2015
    Inventors: Tien Fak TAN, Dmitry LUBOMIRSKY, Kirby H. FLOYD, Son T. NGUYEN, David PALAGASHVILI, Alexander TAM, Shaofeng CHEN
  • Patent number: 8910644
    Abstract: Embodiments of the invention generally relate to apparatus and methods for cleaning chamber components using a cleaning plate. The cleaning plate is adapted to be positioned on a substrate support during a cleaning process, and includes a plurality of turbulence-inducing structures. The turbulence-inducing structures induce a turbulent flow of cleaning gas while the cleaning plate is rotated during a cleaning process. The cleaning plate increases the retention time of the cleaning gas near the showerhead during cleaning. Additionally, the cleaning plate reduces concentration gradients within the cleaning plate to provide a more effective clean. The method includes positioning a cleaning plate adjacent to a showerhead, and introducing cleaning gas to the space between the showerhead and the cleaning plate. A material deposited on the surface of the showerhead is then heated and vaporized in the presence of the cleaning gas, and then exhausted from the processing chamber.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: December 16, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Hua Chung, Xizi Dong, Kyawwin Jason Maung, Hiroji Hanawa, Sang Won Kang, David H. Quach, Donald J. K. Olgado, David Bour, Wei-Yung Hsu, Alexander Tam, Anzhong Chang, Sumedh Acharya
  • Patent number: 8679956
    Abstract: A method and apparatus that includes a processing chamber that includes a showerhead with separate inlets and channels for delivering separate processing gases into a processing volume of the chamber without mixing the gases prior to entering the processing volume is provided. The showerhead includes one or more cleaning gas conduits configured to deliver a cleaning gas directly into the processing volume of the chamber while by-passing the processing gas channels. The showerhead may include a plurality of metrology ports configured to deliver a cleaning gas directly into the processing volume of the chamber while by-passing the processing gas channels. As a result, the processing chamber components can be cleaned more efficiently and effectively than by introducing cleaning gas into the chamber only through the processing gas channels.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: March 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Tam, Anzhong Chang, Sumedh Acharya
  • Publication number: 20140014745
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 16, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Brian H. BURROWS, Alexander TAM, Ronald STEVENS, Kenric T. CHOI, James David FELSCH, Jacob GRAYSON, Sumedh ACHARYA, Sandeep NIJHAWAN, Lori D. WASHINGTON, Nyi O. MYO
  • Publication number: 20130298835
    Abstract: A method and apparatus that includes a processing chamber that includes a showerhead with separate inlets and channels for delivering separate processing gases into a processing volume of the chamber without mixing the gases prior to entering the processing volume is provided. The showerhead includes one or more cleaning gas conduits configured to deliver a cleaning gas directly into the processing volume of the chamber while by-passing the processing gas channels. The showerhead may include a plurality of metrology ports configured to deliver a cleaning gas directly into the processing volume of the chamber while by-passing the processing gas channels. As a result, the processing chamber components can be cleaned more efficiently and effectively than by introducing cleaning gas into the chamber only through the processing gas channels.
    Type: Application
    Filed: January 28, 2013
    Publication date: November 14, 2013
    Inventors: Alexander TAM, Anzhong CHANG, Sumedh ACHARYA
  • Patent number: 8481118
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: July 9, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Brian H. Burrows, Alexander Tam, Ronald Stevens, Kenric T. Choi, James D. Felsch, Jacob Grayson, Sumedh Acharya, Sandeep Nijhawan, Lori D. Washington, Nyi O. Myo
  • Patent number: 8361892
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, the apparatus a processing chamber that includes a showerhead with separate inlets and channels for delivering separate processing gases into a processing volume of the chamber without mixing the gases prior to entering the processing volume. In one embodiment, the showerhead includes one or more cleaning gas conduits configured to deliver a cleaning gas directly into the processing volume of the chamber while by-passing the processing gas channels. In one embodiment, the showerhead includes a plurality of metrology ports configured to deliver a cleaning gas directly into the processing volume of the chamber while by-passing the processing gas channels. As a result, the processing chamber components can be cleaned more efficiently and effectively than by introducing cleaning gas into the chamber only through the processing gas channels.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: January 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Tam, Anzhong Chang, Sumedh Acharya
  • Publication number: 20120291709
    Abstract: A method and apparatus for processing a substrate utilizing a rotating substrate support are disclosed herein. In one embodiment, an apparatus for processing a substrate includes a chamber having a substrate support assembly disposed within the chamber. The substrate support assembly includes a substrate support having a support surface and a heater disposed beneath the support surface. A shaft is coupled to the substrate support and a motor is coupled to the shaft through a rotor to provide rotary movement to the substrate support. A seal block is disposed around the rotor and forms a seal therewith. The seal block has at least one seal and at least one channel disposed along the interface between the seal block and the shaft. A port is coupled to each channel for connecting to a pump. A lift mechanism is coupled to the shaft for raising and lowering the substrate support.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 22, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Jacob Smith, ALEXANDER TAM, R. SURYANARAYANAN IYER, SEAN SEUTTER, BINH TRAN, NIR MERRY, ADAM BRAILOVE, ROBERT SHYDO, JR., ROBERT ANDREWS, FRANK ROBERTS, THEODORE SMICK, GEOFFREY RYDING
  • Publication number: 20120024388
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
    Type: Application
    Filed: July 12, 2011
    Publication date: February 2, 2012
    Inventors: Brian H. Burrows, Alexander Tam, Ronald Stevens, Kenric T. Choi, James D. Felsch, Jacob Grayson, Sumedh Acharya, Sandeep Nijhawan, Lori D. Washington, Nyi O. Myo
  • Patent number: D664170
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: July 24, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Hua Chung, Xizi Dong, Kyawwin Jason Maung, Hiroji Hanawa, Sang Won Kang, David H. Quach, Donald J. K. Olgado, David Bour, Wei-Yung Hsu, Alexander Tam, Anzhong Chang, Sumedh Acharya