Patents by Inventor Alexandre Richez

Alexandre Richez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11512339
    Abstract: An example of an array includes a support, a cross-linked epoxy polyhedral oligomeric silsesquioxane (POSS) resin film on a surface of the support, and a patterned hydrophobic polymer layer on the cross-linked epoxy POSS resin film. The patterned hydrophobic polymer layer defines exposed discrete areas of the cross-linked epoxy POSS resin film, and a polymer coating is attached to the exposed discrete areas. Another example of an array includes a support, a modified epoxy POSS resin film on a surface of the support, and a patterned hydrophobic polymer layer on the modified epoxy POSS resin film. The modified epoxy POSS resin film includes a polymer growth initiation site, and the patterned hydrophobic polymer layer defines exposed discrete areas of the modified epoxy POSS resin film. A polymer brush is attached to the polymer growth initiation site in the exposed discrete areas.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: November 29, 2022
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Wayne N. George, Alexandre Richez, M. Shane Bowen, Andrew A. Brown, Dajun Yuan, Audrey Rose Zak, Sean M. Ramirez, Raymond Campos
  • Patent number: 11447582
    Abstract: Some embodiments described herein relate to new polymer coatings for surface functionalization and new processes for grafting pre-grafted DNA-copolymers to surface(s) of substrates for use in DNA sequencing and other diagnostic applications.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: September 20, 2022
    Assignee: Illumina Cambridge Limited
    Inventors: Andrew A. Brown, Wayne N. George, Alexandre Richez, Anne-Cecile Dingwall, Xavier von Hatten
  • Publication number: 20220185927
    Abstract: A hydrogel includes a dendritic core with 2 to 30 arms, and first and second acrylamide monomers incorporated into each arm. The first acrylamide monomer is: (I), wherein R1 and R2 are independently selected from an alkyl, an alkylamino, an alkylamido, an alkylthio, an aryl, a glycol, and optionally substituted variants thereof; and the second acrylamide monomer is: (II), wherein R3 and R4 are independently hydrogen or an alkyl; L is a linker including a linear chain of 2 to 20 atoms selected from carbon, oxygen, and nitrogen and optional substituents on the carbon and any nitrogen atoms; A is an N substituted amide: (III), where R5 is hydrogen or an alkyl; E is a linear chain of 1 to 4 atom(s) selected from carbon, oxygen and nitrogen, and optional substituents on the carbon and any nitrogen atoms; and Z is an optional nitrogen containing heterocycle.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 16, 2022
    Inventors: Gianluca Andrea Artioli, Andrew A. Brown, Wayne N. George, Colin Pilkington, Jem Pitcairn, Alexandre Richez, Xavier von Hatten
  • Publication number: 20220088834
    Abstract: An imprinting apparatus includes a silicon master having a plurality of nanofeatures defined therein. An anti-stick layer coats the silicon master, the anti-stick layer including a molecule having a cyclosiloxane with at least one silane functional group. A method includes forming a master template by: depositing a formulation on a silicon master including a plurality of nanofeatures defined therein, the formulation including a solvent and a molecule having a cyclosiloxane with at least one silane functional group; and curing the formulation, thereby forming an anti-stick layer on the silicon master, the anti-stick layer including the molecule. The method further includes depositing a silicon-based working stamp material on the anti-stick layer of the master template; curing the silicon-based working stamp material to form a working stamp including a negative replica of the plurality of nanofeatures; and releasing the working stamp from the master template.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 24, 2022
    Inventors: Alexandre Richez, Andrew A. Brown, Julia Morrison, Wayne N. George, Timothy J. Merkel, Audrey Rose Zak
  • Patent number: 11213976
    Abstract: An imprinting apparatus includes a silicon master having a plurality of nanofeatures defined therein. An anti-stick layer coats the silicon master, the anti-stick layer including a molecule having a cyclosiloxane with at least one silane functional group. A method includes forming a master template by: depositing a formulation on a silicon master including a plurality of nanofeatures defined therein, the formulation including a solvent and a molecule having a cyclosiloxane with at least one silane functional group; and curing the formulation, thereby forming an anti-stick layer on the silicon master, the anti-stick layer including the molecule. The method further includes depositing a silicon-based working stamp material on the anti-stick layer of the master template; curing the silicon-based working stamp material to form a working stamp including a negative replica of the plurality of nanofeatures; and releasing the working stamp from the master template.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: January 4, 2022
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Alexandre Richez, Andrew A. Brown, Julia Morrison, Wayne N. George, Timothy J. Merkel, Audrey Rose Zak
  • Patent number: 11199540
    Abstract: Some examples described herein relate to a substrate comprising a silane functionalized surface for reversibly immobilizing a biological molecule of interest, such as oligonucleotides, polynucleotides, or protein. Methods for immobilizing the biological molecule and the use in DNA sequencing and other diagnostic applications are also disclosed.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: December 14, 2021
    Assignee: Illumina Cambridge Limited
    Inventors: Xavier von Hatten, Wayne N. George, Alexandre Richez, Anne-Cecile Dingwall, Andrew A. Brown
  • Publication number: 20210339457
    Abstract: An example of a flow cell includes a substrate and a cured, patterned resin on the substrate. The cured, patterned resin has nano-depressions separated by interstitial regions. Each nano-depression has a largest opening dimension ranging from about 10 nm to about 1000 nm. The cured, patterned resin also includes an interpenetrating polymer network. The interpenetrating polymer network of the cured, patterned resin includes an epoxy-based polymer and a (meth)acryloyl-based polymer.
    Type: Application
    Filed: April 20, 2021
    Publication date: November 4, 2021
    Inventor: Alexandre Richez
  • Publication number: 20210208055
    Abstract: A flow cell package includes first and second surface-modified patterned wafers and a spacer layer. The first surface-modified patterned wafer includes first depressions separated by first interstitial regions, a first functionalized molecule bound to a first silane or silane derivative in at least some of the first depressions, and a first primer grafted to the first functionalized molecule in the at least some of the first depressions. The second surface-modified patterned wafer includes second depressions separated by second interstitial regions, a second functionalized molecule bound to a second silane or silane derivative in at least some of the second depressions, and a second primer grafted to the second functionalized molecule in the at least some of the second depressions. The spacer layer bonds at least some first interstitial regions to at least some second interstitial regions, and at least partially defines respective fluidic chambers of the flow cell package.
    Type: Application
    Filed: March 3, 2021
    Publication date: July 8, 2021
    Inventors: James Tsay, Anmiv Prabhu, David Heiner, Edwin Li, Alexandre Richez, John M. Beierle, Kevan Samiee, Kristina Munoz, Leonid Malevanchik, Ludovic Vincent, Naiqian Zhan, Peyton Shieh, Robert Yang, Samantha Schmitt, Sang Park, Scott Bailey, Sean M. Ramirez, Sunmin Ahn, Valerie Uzzell, Wei Wei, Yuxiang Huang, Tyler Jamison Dill
  • Patent number: 10955332
    Abstract: A flow cell package includes first and second surface-modified patterned wafers and a spacer layer. The first surface-modified patterned wafer includes first depressions separated by first interstitial regions, a first functionalized molecule bound to a first silane or silane derivative in at least some of the first depressions, and a first primer grafted to the first functionalized molecule in the at least some of the first depressions. The second surface-modified patterned wafer includes second depressions separated by second interstitial regions, a second functionalized molecule bound to a second silane or silane derivative in at least some of the second depressions, and a second primer grafted to the second functionalized molecule in the at least some of the second depressions. The spacer layer bonds at least some first interstitial regions to at least some second interstitial regions, and at least partially defines respective fluidic chambers of the flow cell package.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: March 23, 2021
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: James Tsay, Anmiv Prabhu, David Heiner, Edwin Li, Alexandre Richez, John M. Beierle, Kevan Samiee, Kristina Munoz, Leonid Malevanchik, Ludovic Vincent, Naiqian Zhan, Peyton Shieh, Robert Yang, Samantha Schmitt, Sang Park, Scott Bailey, Sean M. Ramirez, Sunmin Ahn, Valerie Uzzell, Wei Wei, Yuxiang Huang, Tyler Jamison Dill
  • Publication number: 20210010080
    Abstract: Substrates comprising dual functional polymer layered surfaces and the preparation thereof by using UV nano-imprinting processes are disclosed. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 14, 2021
    Inventors: Andrew A. Brown, Wayne N. George, Alexandre Richez, M. Shane Bowen
  • Patent number: 10808282
    Abstract: Substrates comprising dual functional polymer layered surfaces and the preparation thereof by using UV nano-imprinting processes are disclosed. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: October 20, 2020
    Assignee: ILLUMINA, INC.
    Inventors: Andrew A. Brown, Wayne N. George, Alexandre Richez, M. Shane Bowen
  • Publication number: 20200292540
    Abstract: Some examples described herein relate to a substrate comprising a silane functionalized surface for reversibly immobilizing a biological molecule of interest, such as oligonucleotides, polynucleotides, or protein. Methods for immobilizing the biological molecule and the use in DNA sequencing and other diagnostic applications are also disclosed.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Inventors: Xavier von Hatten, Wayne N. George, Alexandre Richez, Anne-Cecile Dingwall, Andrew A. Brown
  • Patent number: 10684281
    Abstract: Some embodiments described herein relate to a substrate comprising a silane functionalized surface for reversibly immobilizing a biological molecule of interest, such as oligonucleotides, polynucleotides, or protein. Methods for immobilizing the biological molecule and the use in DNA sequencing and other diagnostic applications are also disclosed.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: June 16, 2020
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Xavier von Hatten, Wayne N. George, Alexandre Richez, Anne-Cecile Dingwall, Andrew A. Brown
  • Publication number: 20200131285
    Abstract: Some embodiments described herein relate to new polymer coatings for surface functionalization and new processes for grafting pre-grafted DNA-copolymers to surface(s) of substrates for use in DNA sequencing and other diagnostic applications.
    Type: Application
    Filed: January 10, 2020
    Publication date: April 30, 2020
    Inventors: Andrew A. Brown, Wayne N. George, Alexandre Richez, Anne-Cecile Dingwall, Xavier von Hatten
  • Patent number: 10577439
    Abstract: Some embodiments described herein relate to new polymer coatings for surface functionalization and new processes for grafting pre-grafted DNA-copolymers to surface(s) of substrates for use in DNA sequencing and other diagnostic applications.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 3, 2020
    Assignee: Illumina Cambridge Limited
    Inventors: Andrew A. Brown, Wayne N. George, Alexandre Richez, Anne-Cecile Dingwall, Xavier von Hatten
  • Publication number: 20190194363
    Abstract: Some embodiments described herein relate to new polymer coatings for surface functionalization and new processes for grafting pre-grafted DNA-copolymers to surface(s) of substrates for use in DNA sequencing and other diagnostic applications.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 27, 2019
    Inventors: Andrew A. Brown, Wayne N. George, Alexandre Richez, Anne-Cecile Dingwall, Xavier von Hatten
  • Patent number: 10208142
    Abstract: Some embodiments described herein relate to new polymer coatings for surface functionalization and new processes for grafting pre-grafted DNA-copolymers to surface(s) of substrates for use in DNA sequencing and other diagnostic applications.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: February 19, 2019
    Assignee: Illumnia Cambridge Limited
    Inventors: Andrew A. Brown, Wayne N. George, Alexandre Richez, Anne-Cecile Dingwall, Xavier von Hatten
  • Publication number: 20180327832
    Abstract: An example of a method includes providing a substrate with an exposed surface comprising a first chemical group, wherein the providing optionally comprises modifying the exposed surface of the substrate to incorporate the first chemical group; reacting the first chemical group with a first reactive group of a functionalized polymer molecule to form a functionalized polymer coating layer covalently bound to the exposed surface of the substrate; grafting a primer to the functionalized polymer coating layer by reacting the primer with a second reactive group of the functionalized polymer coating layer; and forming a water-soluble protective coating on the primer and the functionalized polymer coating layer. Examples of flow cells incorporating examples of the water-soluble protective coating are also disclosed herein.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 15, 2018
    Inventors: Sean M. Ramirez, Brian D. Mather, Edwin Li, Sojeong Moon, Innsu Daniel Kim, Alexandre Richez, Ludovic Vincent, Xavier von Hatten, Hai Quang Tran, Maxwell Zimmerley, Julia Morrison, Gianluca Andrea Artioli, Krystal Sly, Hayden Black, Lewis J. Kraft, Hong Xie, Wei Wei, Ryan Sanford
  • Publication number: 20180274026
    Abstract: Substrates comprising dual functional polymer layered surfaces and the preparation thereof by using UV nano-imprinting processes are disclosed. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Application
    Filed: July 5, 2016
    Publication date: September 27, 2018
    Inventors: Andrew A. BROWN, Wayne N. GEORGE, Alexandre RICHEZ, M. Shane BOWEN
  • Publication number: 20180267034
    Abstract: Some embodiments described herein relate to a substrate comprising a silane functionalized surface for reversibly immobilizing a biological molecule of interest, such as oligonucleotides, polynucleotides, or protein. Methods for immobilizing the biological molecule and the use in DNA sequencing and other diagnostic applications are also disclosed.
    Type: Application
    Filed: May 3, 2018
    Publication date: September 20, 2018
    Inventors: Xavier von Hatten, Wayne N. George, Alexandre Richez, Anne-Cecile Dingwall, Andrew A. Brown