Patents by Inventor Ambreesh Bhattad

Ambreesh Bhattad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11876455
    Abstract: The present document relates to power converters. A power converter may be configured to convert an input voltage at an input of the power converter into an output voltage at an output of the power converter. The power converter may comprise a first switching circuit with a first inductor, a first high-side switching element, and a first low-side switching element. The power converter may comprise a second switching circuit with a second inductor, a second high-side switching element, and a second low-side switching element. The power converter may comprise a capacitive element having a first terminal coupled to the first high-side switching element and to the second high-side switching element and having a second terminal coupled to the first low-side switching element at a first node. The power converter may comprise a third switching element coupled between the first node and the output of the power converter.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: January 16, 2024
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Milan Dragojevic, James T. Doyle, Ambreesh Bhattad
  • Patent number: 11860199
    Abstract: An apparatus for a first current sensor for a switching converter has an inductor and a first switch. The first switch is arranged to selectively couple the inductor to a first voltage. The first current sensor generates a first output current that is dependent on an inductor current flowing through the inductor The first current sensor compensates for an error arising due to the first switch in the generation of the first output current. The apparatus provides an improved current sensor for a switching converter that overcomes or mitigates the problem of errors in the measurement of a current.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: January 2, 2024
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Francesco Paolo, Ambreesh Bhattad
  • Patent number: 11625055
    Abstract: A linear regulator which has a pass device coupled between an input voltage level and an output node, a voltage divider circuit for generating a feedback voltage that depends on an output voltage at the output node, and an operational amplifier for controlling the pass device, the operational amplifier receiving the feedback voltage and a reference voltage at its inputs is presented. The operational amplifier has: an input stage that receives the feedback voltage and the reference voltage at its inputs, an amplifier stage that receives an output of the input stage at its input, and a current injection circuit for sourcing current into an intermediate node between the input stage and the amplifier stage, or sinking a current from the intermediate node. The disclosure further relates to a corresponding method of operating a linear regulator.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: April 11, 2023
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Carlos Azevedo, Ambreesh Bhattad, Frank Kronmueller, Mahir Uka, Benedikt Wolf
  • Patent number: 11601093
    Abstract: The present document relates to differential amplifiers. A differential amplifier may comprise a current source, a first transistor, a second transistor, and a compensation circuit. A reference voltage may be applied to a first terminal of the first transistor, and a second terminal of the first transistor may be coupled to an output of the current source. A feedback voltage may be applied to a first terminal of the second transistor, and a second terminal of the second transistor may be coupled to the output of the current source. The compensation circuit may comprise a capacitive element coupled to the first terminal of the first transistor, and the compensation circuit may be configured to reduce a change of the reference voltage at the first terminal of the first transistor.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: March 7, 2023
    Assignee: Silego Technology Inc.
    Inventors: Ambreesh Bhattad, Gary Hague
  • Patent number: 11526185
    Abstract: A solid-state circuit is presented which may comprise a pass device, a control circuit, and a leakage current compensation circuit. The pass device may have a first terminal, a second terminal and a drive terminal, wherein the first terminal of the pass device is coupled with an input terminal of the solid-state circuit, and wherein the second terminal of the pass device is coupled with an output terminal of the solid-state circuit. The control circuit may be coupled with the drive terminal of the pass device and may be configured to drive the pass device with a driving voltage. The leakage current compensation circuit may be configured to receive a leakage current of the pass device and may be configured to forward said leakage current as a bias current to said control circuit.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: December 13, 2022
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Ambreesh Bhattad, Frank Kronmueller
  • Publication number: 20220334153
    Abstract: An apparatus for a first current sensor for a switching converter is presented. The apparatus has an inductor and a first switch. The first switch is arranged to selectively couple the inductor to a first voltage. The first current sensor generates a first output current that is dependent on an inductor current flowing through the inductor The first current sensor compensates for an error arising due to the first switch in the generation of the first output current. The apparatus provides an improved current sensor for a switching converter that overcomes or mitigates the problem of errors in the measurement of a current.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 20, 2022
    Inventors: Francesco Paolo, Ambreesh Bhattad
  • Patent number: 11469664
    Abstract: The present document describes a power converter configured to provide energy at an output based on energy provided at an input. The power converter comprises a first switch, wherein a first node is coupled to the input and wherein a second node is coupled to an intermediate point, a second switch, wherein a first node is coupled to the intermediate point and wherein a second node is coupled to an inductor point, a capacitor, wherein a first node of the capacitor is coupled to the intermediate point, a first diode element, wherein a first node is coupled to a second node of the capacitor and wherein a second node is coupled to the inductor point, a second diode element, wherein a first node is coupled to a reference port, and wherein a second node is coupled to the second node of the capacitor; and an inductor, wherein a first node is coupled to the inductor point and wherein a second node is coupled to the output.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: October 11, 2022
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Ambreesh Bhattad, Horst Knoedgen, James T. Doyle, Milan Dragojevic
  • Publication number: 20220231607
    Abstract: The present document relates to power converters. A power converter may be configured to convert an input voltage at an input of the power converter into an output voltage at an output of the power converter. The power converter may comprise a first switching circuit with a first inductor, a first high-side switching element, and a first low-side switching element. The power converter may comprise a second switching circuit with a second inductor, a second high-side switching element, and a second low-side switching element. The power converter may comprise a capacitive element having a first terminal coupled to the first high-side switching element and to the second high-side switching element and having a second terminal coupled to the first low-side switching element at a first node. The power converter may comprise a third switching element coupled between the first node and the output of the power converter.
    Type: Application
    Filed: January 14, 2022
    Publication date: July 21, 2022
    Inventors: Milan Dragojevic, James T. Doyle, Ambreesh Bhattad
  • Publication number: 20220103128
    Abstract: The present document relates to differential amplifiers. A differential amplifier may comprise a current source, a first transistor, a second transistor, and a compensation circuit. A reference voltage may be applied to a first terminal of the first transistor, and a second terminal of the first transistor may be coupled to an output of the current source. A feedback voltage may be applied to a first terminal of the second transistor, and a second terminal of the second transistor may be coupled to the output of the current source. The compensation circuit may comprise a capacitive element coupled to the first terminal of the first transistor, and the compensation circuit may be configured to reduce a change of the reference voltage at the first terminal of the first transistor.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 31, 2022
    Inventors: Ambreesh Bhattad, Gary Hague
  • Patent number: 11223277
    Abstract: The present document describes a power converter configured to provide energy at an output based on energy provided at an input. The power converter comprises a first switch, wherein a first node is coupled to the input and wherein a second node is coupled to an intermediate point, a second switch, wherein a first node is coupled to the intermediate point and wherein a second node is coupled to an inductor point, a capacitor, wherein a first node of the capacitor is coupled to the intermediate point, a first diode element, wherein a first node is coupled to a second node of the capacitor and wherein a second node is coupled to the inductor point, a second diode element, wherein a first node is coupled to a reference port, and wherein a second node is coupled to the second node of the capacitor; and an inductor, wherein a first node is coupled to the inductor point and wherein a second node is coupled to the output.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: January 11, 2022
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Ambreesh Bhattad, Horst Knoedgen, James T. Doyle, Milan Dragojevic
  • Patent number: 11099590
    Abstract: A linear regulator with indirect leakage compensation is presented. The regulator has a pass device coupled between an input voltage and an output node, a feedback loop for controlling the pass device based on a reference voltage and a feedback voltage that depends on an output voltage, an off-state device that is kept in the off-state, and a leakage compensation circuit for sinking a leakage compensation current from the output node, in dependence on a leakage current of the off-state device. The off-state device is coupled between the leakage compensation circuit and an intermediate voltage level of the linear regulator. The intermediate voltage level is a voltage level between the input voltage level and ground, with a magnitude of the intermediate voltage level being smaller than a magnitude of the input voltage level. A corresponding method of operating a linear regulator with leakage compensation is presented.
    Type: Grant
    Filed: March 21, 2020
    Date of Patent: August 24, 2021
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Carlos Azevedo, Ambreesh Bhattad
  • Patent number: 11092989
    Abstract: A regulator configured to provide at an output node a load current at an output voltage is described. The regulator comprises a pass transistor for providing the load current at the output node. Furthermore, the regulator comprises feedback means for deriving a feedback voltage from the output voltage at the output node. In addition, the regulator comprises a differential amplifier configured to control the pass transistor in dependence of the feedback voltage and in dependence of a reference voltage. The regulator further comprises compensation means configured to determine a sensed current which is indicative of the load current at the output node. Furthermore, the compensation means are configured to adjust an operation point of the regulator in dependence of the sensed current and in dependence of a value of a track impedance of a conductive track which links the output node to a load.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 17, 2021
    Assignee: Apple Inc.
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Gary Hague, Frank Kronmueller
  • Publication number: 20210184568
    Abstract: The present document describes a power converter configured to provide energy at an output based on energy provided at an input. The power converter comprises a first switch, wherein a first node is coupled to the input and wherein a second node is coupled to an intermediate point, a second switch, wherein a first node is coupled to the intermediate point and wherein a second node is coupled to an inductor point, a capacitor, wherein a first node of the capacitor is coupled to the intermediate point, a first diode element, wherein a first node is coupled to a second node of the capacitor and wherein a second node is coupled to the inductor point, a second diode element, wherein a first node is coupled to a reference port, and wherein a second node is coupled to the second node of the capacitor; and an inductor, wherein a first node is coupled to the inductor point and wherein a second node is coupled to the output.
    Type: Application
    Filed: February 26, 2021
    Publication date: June 17, 2021
    Inventors: Ambreesh Bhattad, Horst Knoedgen, James T. Doyle, Milan Dragojevic
  • Publication number: 20210109553
    Abstract: A solid-state circuit is presented which may comprise a pass device, a control circuit, and a leakage current compensation circuit. The pass device may have a first terminal, a second terminal and a drive terminal, wherein the first terminal of the pass device is coupled with an input terminal of the solid-state circuit, and wherein the second terminal of the pass device is coupled with an output terminal of the solid-state circuit. The control circuit may be coupled with the drive terminal of the pass device and may be configured to drive the pass device with a driving voltage. The leakage current compensation circuit may be configured to receive a leakage current of the pass device and may be configured to forward said leakage current as a bias current to said control circuit.
    Type: Application
    Filed: October 8, 2020
    Publication date: April 15, 2021
    Inventors: Ambreesh Bhattad, Frank Kronmueller
  • Publication number: 20210083582
    Abstract: The present document describes a power converter configured to provide energy at an output based on energy provided at an input. The power converter comprises a first switch, wherein a first node is coupled to the input and wherein a second node is coupled to an intermediate point, a second switch, wherein a first node is coupled to the intermediate point and wherein a second node is coupled to an inductor point, a capacitor, wherein a first node of the capacitor is coupled to the intermediate point, a first diode element, wherein a first node is coupled to a second node of the capacitor and wherein a second node is coupled to the inductor point, a second diode element, wherein a first node is coupled to a reference port, and wherein a second node is coupled to the second node of the capacitor; and an inductor, wherein a first node is coupled to the inductor point and wherein a second node is coupled to the output.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Ambreesh Bhattad, Horst Knoedgen, James T. Doyle, Milan Dragojevic
  • Publication number: 20200382108
    Abstract: The present document discloses a circuitry for delaying a digital input signal. In particular, the circuitry may comprise a delay cell circuit and a reciprocal current digital-to-analog converter (DAC). The delay cell circuit may be coupled to the reciprocal current DAC. More particularly, the reciprocal current DAC may be configured to output a charge current to the delay cell circuit according to a value of a control input provided to the reciprocal current DAC. The charge current output by the reciprocal current DAC may be inversely proportional to the value of the control input, wherein the delay depends on the charge current.
    Type: Application
    Filed: August 8, 2019
    Publication date: December 3, 2020
    Inventors: Gary Hague, Rupert Howes, Ambreesh Bhattad
  • Patent number: 10840894
    Abstract: The present document discloses a circuitry for delaying a digital input signal. In particular, the circuitry may comprise a delay cell circuit and a reciprocal current digital-to-analog converter (DAC). The delay cell circuit may be coupled to the reciprocal current DAC. More particularly, the reciprocal current DAC may be configured to output a charge current to the delay cell circuit according to a value of a control input provided to the reciprocal current DAC. The charge current output by the reciprocal current DAC may be inversely proportional to the value of the control input, wherein the delay depends on the charge current.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: November 17, 2020
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Gary Hague, Rupert Howes, Ambreesh Bhattad
  • Publication number: 20200310478
    Abstract: A linear regulator with indirect leakage compensation is presented. The regulator has a pass device coupled between an input voltage and an output node, a feedback loop for controlling the pass device based on a reference voltage and a feedback voltage that depends on an output voltage, an off-state device that is kept in the off-state, and a leakage compensation circuit for sinking a leakage compensation current from the output node, in dependence on a leakage current of the off-state device. The off-state device is coupled between the leakage compensation circuit and an intermediate voltage level of the linear regulator. The intermediate voltage level is a voltage level between the input voltage level and ground, with a magnitude of the intermediate voltage level being smaller than a magnitude of the input voltage level. A corresponding method of operating a linear regulator with leakage compensation is presented.
    Type: Application
    Filed: March 21, 2020
    Publication date: October 1, 2020
    Inventors: Carlos Azevedo, Ambreesh Bhattad
  • Patent number: 10771049
    Abstract: The present document describes a control circuit and a method for controlling a power transistor, wherein the power transistor has a drain, a gate and a source. The power transistor has a body diode. The control circuit is configured to predict a time instant at which a drain potential at the drain falls below a source potential at the source of the power transistor by more than a diode threshold voltage of the body diode. Furthermore, the control circuit is configured to apply a pre-bias potential and/or provide a pre-bias current to the gate of the power transistor in dependence the predicted time instant, such that a conducting channel between the drain and the source is provided, which at least partially takes over current which would otherwise flow through the body diode.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 8, 2020
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Ambreesh Bhattad, Horst Knoedgen
  • Publication number: 20200278709
    Abstract: A linear regulator which has a pass device coupled between an input voltage level and an output node, a voltage divider circuit for generating a feedback voltage that depends on an output voltage at the output node, and an operational amplifier for controlling the pass device, the operational amplifier receiving the feedback voltage and a reference voltage at its inputs is presented. The operational amplifier has: an input stage that receives the feedback voltage and the reference voltage at its inputs, an amplifier stage that receives an output of the input stage at its input, and a current injection circuit for sourcing current into an intermediate node between the input stage and the amplifier stage, or sinking a current from the intermediate node. The disclosure further relates to a corresponding method of operating a linear regulator.
    Type: Application
    Filed: April 3, 2019
    Publication date: September 3, 2020
    Inventors: Carlos Azevedo, Ambreesh Bhattad, Frank Kronmueller, Mahir Uka, Benedikt Wolf