Patents by Inventor Andreas Dobner

Andreas Dobner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240049383
    Abstract: The invention relates to a connection carrier having at least one contact track which is connected in an electrically conductive manner to a contact surface for electrically contacting a semiconductor component, the contact track having a network structure in at least some locations. The invention further relates to a method for producing a connection carrier having contact tracks.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 8, 2024
    Inventors: Sebastian WITTMANN, Michael BRANDL, Andreas DOBNER
  • Patent number: 11662070
    Abstract: A placement device for placing optoelectronic components on electrical lines includes a holding device for holding at least one electric line extending in a longitudinal direction, and an application device for arranging optoelectronic components on the at least one electrical line.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: May 30, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Frank Singer, Ralph Bertram, Andreas Dobner, Andreas Waldschik
  • Publication number: 20230015476
    Abstract: In an embodiment a semiconductor component includes a carrier, at least one semiconductor chip arranged on the carrier, the semiconductor chip having at least one first electrical contact at a main surface of the semiconductor chip facing away from the carrier, an electrically insulating layer arranged on the carrier and at least one electrical connection layer led by the electrically insulating layer to the first electrical contact, wherein the electrically insulating layer includes a photopatternable material.
    Type: Application
    Filed: December 8, 2020
    Publication date: January 19, 2023
    Inventors: Stefan Rass, Bjoern Hoxhold, Andreas Waldschik, Andreas Dobner, Hermann Nuss
  • Publication number: 20230006118
    Abstract: In an embodiment an optoelectronic device includes a carrier and a plurality of semiconductor chips fastened on the carrier by a connector, wherein each semiconductor chip has at least one contact pad on a main surface facing away from the carrier, wherein each contact pad is contacted electrically by an interconnecting track, and wherein the interconnecting track is guided over an edge of the main surface of the semiconductor chip onto the carrier.
    Type: Application
    Filed: November 30, 2020
    Publication date: January 5, 2023
    Inventors: Hermann Nuss, Andreas Dobner, Bjoern Hoxhold, Andreas Waldschik, Erwin Beer, Bernd Boehm, Ludwig Hofbauer, Stefan Merl, Stefan Rass, Matthias Stark
  • Patent number: 11525554
    Abstract: An irradiation unit is disclosed that includes a pump radiation source for emitting pump radiation in the form of a beam, a conversion element for at least partially converting the pump radiation into conversion radiation, and a support on which the conversion element is situated. The support accommodates a through-hole through which the beam including the pump radiation is incident on an incident surface of the conversion element, the though-hole being laterally delimited by an inner wall face of the support, at least one portion of the face tapering in the direction of the incident surface. During operation, the pump radiation conducted in the beam is at least intermittently at least in part, incident on the inner wall face of the support and is reflected thereby onto the incident surface.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: December 13, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Jasmin Muster, Dennis Sprenger, Joerg Sorg, Sergey Kudaev, Andreas Dobner, Melanie Zumkley
  • Publication number: 20220352126
    Abstract: A light-emitting window element includes a transparent first carrier layer, a transparent second carrier layer, a substrate with a plurality of light-emitting semiconductor chips arranged thereon, and an optical layer having an adjustable transparency. The substrate with the plurality of light-emitting semiconductor chips and the optical layer are arranged between the first and second carrier layers, and the first and second carrier layers, the substrate with the plurality of light-emitting semiconductor chips and the optical layer form a laminate composite.
    Type: Application
    Filed: July 30, 2020
    Publication date: November 3, 2022
    Inventors: Andreas DOBNER, Hubert HALBRITTER
  • Publication number: 20220352135
    Abstract: An optoelectronic component includes at least one optoelectronic semiconductor chip with a main surface on which two electrical contacts are arranged. The optoelectronic component also includes a control chip for controlling the optoelectronic semiconductor chip with a plurality of electrical connection pads. The optoelectronic component further includes a housing with a housing body. The optoelectronic semiconductor chip is arranged with a mounting surface, which extends transversely to the main surface, in a first recess of the housing body. A side surface of the first recess forms an obtuse tilt angle with a bottom surface of the first recess. At least one of the electrical contacts of the optoelectronic semiconductor chip is electrically conductively connected to an electrical connection pad of the control chip via a conductor path. The conductor path is arranged at least in places on the side surface of the first recess.
    Type: Application
    Filed: October 8, 2020
    Publication date: November 3, 2022
    Inventors: Andreas DOBNER, Andreas WALDSCHIK, Matthias GOLDBACH
  • Publication number: 20220336697
    Abstract: In an embodiment a method for singulating components from a component composite includes providing the component composite comprising a structured substrate including component carrier bodies and connecting portions arranged between the component carrier bodies, and a base material, in which the connecting portions of the structured substrate are at least partially embedded, removing the base material in separating regions of the component composite, which include the connecting portions and singulating the component composite at the separating regions to form the components.
    Type: Application
    Filed: July 28, 2020
    Publication date: October 20, 2022
    Inventors: Andreas Dobner, Matthias Goldbach, Georg Bogner
  • Publication number: 20220289028
    Abstract: An optoelectronic apparatus comprises a transparent first cover, at least layer two carriers mounted on the first cover, wherein a plurality of optoelectronic elements configured to emit light are attached to each of the at least two carriers, and a second cover mounted on the at least two carriers, wherein the second cover has at least partially a lower optical transmittance than the first cover and/or the at least two carriers.
    Type: Application
    Filed: October 29, 2020
    Publication date: September 15, 2022
    Inventors: Ludwig HOFBAUER, Armin WETTERER, Michael WITTMANN, Hanna SCHULZ, Sebastian WITTMANN, Andreas DOBNER, Ulrich FREI, Matthias GOLDBACH
  • Publication number: 20220244555
    Abstract: An optoelectronic device, in particular a display device, comprises: at least one optoelectronic light source, an at least partially transparent front layer, an at least partially transparent support layer, wherein the light source is arranged between the front layer and the support layer, wherein a front side of the light source faces the front layer and a rear side of the light source faces the support layer, and wherein a limiting device is provided in a circumferential direction around the light source, wherein the limiting device limits a spatial region, in which the light source emits light such that total internal reflection of the emitted light, in particular at an interface between the front layer and the outside, is avoided or at least reduced.
    Type: Application
    Filed: October 29, 2020
    Publication date: August 4, 2022
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas DOBNER, Uli HILLER, Peter BRICK, Hubert HALBRITTER, Thomas SCHWARZ, Michael WITTMANN, Stefan GROETSCH, Simon SCHWALENBERG, Sebastian WITTMANN
  • Publication number: 20220238497
    Abstract: An optoelectronic device, in particular an at least semi-transparent pane for example for a vehicle, comprises: a cover layer, a carrier layer, an intermediate layer between the cover layer and the carrier layer, wherein at least one and preferably a plurality of optoelectronic light sources, in particular ?LEDS, is arranged on at least one surface of the intermediate layer and/or is at least partially embedded in the intermediate layer, wherein the intermediate layer is adapted such that light emitted by the optoelectronic light sources at least partially spreads in and along the intermediate layer and exits the intermediate layer within and/or at a pre-set distance to the respective optoelectronic light source in a direction through the cover layer and/or through the carrier layer.
    Type: Application
    Filed: October 29, 2020
    Publication date: July 28, 2022
    Inventors: Michael BRANDL, Andreas DOBNER, Matthias GOLDBACH, Sebastian WITTMANN, Uli HILLER, Markus KLEIN, Thomas SCHWARZ, Andreas WALDSCHIK, Michael WITTMANN, Matthias BRUCKSCHLOEGL, Stefan GROETSCH, Rainer HUBER, Peter BRICK, Ludwig HOFBAUER
  • Publication number: 20220227230
    Abstract: An optoelectronic device comprises a plurality of layer segments, in particular intermediate layer segments, arranged between a cover layer and a carrier layer. At least one optoelectronic component is arranged on at least one of the plurality of layer segments and a first and a second layer segment of the plurality of the layer segments are overlapping each other along a first direction each forming a respective boundary region. The first layer segment comprises at least one first contact pad and the second layer segment comprises at least one second contact pad, wherein the at least one first and second contact pad are arranged in the respective boundary region facing each other and being mechanically and electrically connected. The at least one first and second contact pad each comprises a plurality of nanowires which are at least partially made of conductive material such as for example copper, gold, or nickel.
    Type: Application
    Filed: October 29, 2020
    Publication date: July 21, 2022
    Inventors: Matthias GOLDBACH, Stefan GROETSCH, Ludwig HOFBAUER, Sebastian WITTMANN, Robert REGENSBURGER, Thomas SCHWARZ, Michael BRANDL, Andreas DOBNER, Sebastian STIGLER
  • Publication number: 20220199873
    Abstract: An optoelectronic component is specified, with an optoelectronic semiconductor chip which, in operation, is configured to emit or detect electromagnetic radiation, a connection carrier, on which the semiconductor chip is arranged, an electrically conductive connection, which is electrically conductively connected to the semiconductor chip and/or the connection carrier, and an electrically insulating material, which surrounds the semiconductor chip and/or the connection carrier at least in places, wherein the electrically conductive connection is arranged in places on the electrically insulating material. Furthermore, a method for producing an optoelectronic component is specified.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 23, 2022
    Inventors: Matthias GOLDBACH, Andreas DOBNER
  • Publication number: 20220167334
    Abstract: An optoelectronic device comprises a plurality of optoelectronic light sources being arranged on a first layer, in particular an intermediate layer being arranged between a cover layer and a carrier layer. The first layer comprises or consists of an at least partially transparent material and each optoelectronic light source of the plurality of optoelectronic light sources comprises an individual light converter for converting light emitted by the associated light source into converted light. The light converter of each optoelectronic light source is arranged on the first layer and/or the associated optoelectronic light source.
    Type: Application
    Filed: December 3, 2021
    Publication date: May 26, 2022
    Inventors: Michael Brandl, Andreas Dobner, Matthias Goldbach, Sebastian Wittmann, Uli Hiller, Markus Klein, Thomas Schwarz, Andreas Waldschik, Michael Wittmann, Matthias Bruckschloegl, Stefan Groetsch, Rainer Huber, Peter Brick, Ludwig Hofbauer
  • Publication number: 20220149019
    Abstract: An optoelectronic device comprises a layer stack, which includes a carrier layer, a cover layer, and a first layer. The first layer is in particular an intermediate layer, arranged between the cover layer and the carrier layer. At least one electronic or optoelectronic element, in particular an optoelectronic light source, is arranged on the first layer and at least one layer of the layer stack and preferably all layers of the layer stack are at least partially transparent. The layer stack comprises at least one layer which comprises particles with a high thermal conductivity and/or at least one thermally conductive layer which is arranged between two adjacent layers of the layer stack.
    Type: Application
    Filed: December 3, 2021
    Publication date: May 12, 2022
    Inventors: Michael Brandl, Andreas Dobner, Matthias Goldbach, Sebastian Wittmann, Uli Hiller, Markus Klein, Thomas Schwarz, Andreas Waldschik, Michael Wittmann, Matthias Bruckschloegl, Stefan Groetsch, Rainer Huber, Peter Brick, Ludwig Hofbauer
  • Patent number: 11329199
    Abstract: An optoelectronic semiconductor chip, a method for manufacturing an optoelectronic component and an optoelectronic component are disclosed. In an embodiment an optoelectronic semiconductor chip includes a semiconductor layer sequence having an emission side, the emission side comprising a plurality of emission fields, partition walls on the emission side in a region between two adjacent emission fields and a conversion element on one or more emission fields, wherein the conversion element includes a matrix material with first phosphor particles incorporated therein, wherein the first phosphor particles are sedimented in the matrix material such that a mass fraction of the first phosphor particles is greater in a lower region of the conversion element facing the semiconductor layer sequence than in a remaining region of the conversion element, and wherein the partition walls are attached to the emission side without any additional connectors.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: May 10, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Britta Göötz, Matthias Hien, Andreas Dobner, Peter Brick, Matthias Goldbach, Uli Hiller, Sebastian Stigler
  • Patent number: 11316075
    Abstract: In one embodiment, the optoelectronic semiconductor component (1) comprises a semiconductor chip (2) for generating radiation and an inorganic housing (3). The semiconductor chip (2) is accommodated in a hermetically sealed manner in the housing (3). The housing (3) has a preferably ceramic base plate (31), a cover plate (33) and at least one preferably ceramic housing ring (32) and a plurality of electrical through-connections (51). A recess (15), in which the semiconductor chip (2) is located, is formed by the housing ring (32). The base plate (31) has a plurality of electrical connection surfaces (35) on a component underside (11). A plurality of through-connections (51) each extend through the base plate (31), through the cover plate (33) and through the housing ring (32). The base plate (31), the at least one housing ring (32) and the cover plate (33) are firmly connected to one another via continuous, peripheral inorganic sealing frames (6).
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 26, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Jörg Erich Sorg, Christoph Koller, Andreas Dobner
  • Publication number: 20220020904
    Abstract: An optoelectronic light emitting device includes a pixel with a transparent or translucent carrier substrate, on which a semiconductor light emitting arrangement with at least one micro LED is arranged. The micro LED extends over a partial area of the pixel. The main radiation direction of the semiconductor light emitting arrangement is directed onto a backscattering surface element arranged behind the transparent carrier substrate in viewing direction. The semiconductor light emitting arrangement includes a beam shaping element.
    Type: Application
    Filed: December 17, 2019
    Publication date: January 20, 2022
    Inventors: Thomas SCHWARZ, Andreas DOBNER, Frank SINGER, Stefan GROETSCH
  • Patent number: 11222999
    Abstract: A device with a lead frame, a moulded body and a plurality of semiconductor chips configured to generate radiation is specified, wherein the lead frame has two connection parts for external electrical contacting of the device; the moulded body is formed to the lead frame; the moulded body is transmissive to the radiation generated during operation of the device; and the semiconductor chips are arranged on a front-side of the moulded body and each of the semiconductor chips overlap with the device with the moulded body in plan view of the device. Furthermore, a method for producing devices is specified.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: January 11, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Reiner Windisch, Florian Bösl, Andreas Dobner, Matthias Sperl
  • Publication number: 20210372597
    Abstract: A device includes a carrier and a plurality of semiconductor chips configured to generate radiation. The carrier includes a lead frame. The lead frame includes two connecting parts for external electrical contacting of the device. The semiconductor chips are arranged on the carrier. The carrier is surrounded by a casing at least in places along its entire circumference. The casing forms a side face of the device at least in places. The side face includes traces of material removal.
    Type: Application
    Filed: November 20, 2018
    Publication date: December 2, 2021
    Inventors: Reiner WINDISCH, Florian BOESL, Andreas DOBNER, Matthias SPERL