Patents by Inventor Andreas Hegedus

Andreas Hegedus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100126571
    Abstract: Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) device may incorporate front side and/or back side light trapping techniques in an effort to absorb as many of the photons incident on the front side of the PV device as possible in the absorber layer. The light trapping techniques may include a front side antireflective coating, multiple window layers, roughening or texturing on the front and/or the back sides, a back side diffuser for scattering the light, and/or a back side reflector for redirecting the light into the interior of the PV device. With such light trapping techniques, more light may be absorbed by the absorber layer for a given amount of incident light, thereby increasing the efficiency of the PV device.
    Type: Application
    Filed: October 23, 2009
    Publication date: May 27, 2010
    Inventors: Isik C. Kizilyalli, Melissa Archer, Harry Atwater, Thomas J. Gmitter, Gang He, Andreas Hegedus, Gregg Higashi
  • Publication number: 20100126552
    Abstract: Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) unit may have all electrical contacts positioned on the back side of the PV device to avoid shadowing and increase absorption of the photons impinging on the front side of the PV unit. Several PV units may be combined into PV banks, and an array of PV banks may be connected to form a PV module with thin strips of metal or conductive polymer formed at low temperature. Such innovations may allow for greater efficiency and flexibility in PV devices when compared to conventional solar cells.
    Type: Application
    Filed: October 23, 2009
    Publication date: May 27, 2010
    Inventors: Isik C. Kizilyalli, Melissa Archer, Harry Atwater, Thomas J. Gmitter, Gang He, Andreas Hegedus, Gregg Higashi
  • Publication number: 20100126572
    Abstract: Methods and apparatus for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells are provided. A photovoltaic (PV) device generally includes a window layer; an absorber layer disposed below the window layer such that electrons are generated when photons travel through the window layer and are absorbed by the absorber layer; and a plurality of contacts for external connection coupled to the absorber layer, such that all of the contacts for external connection are disposed below the absorber layer and do not block any of the photons from reaching the absorber layer through the window layer. Locating all the contacts on the back side of the PV device avoids solar shadows caused by front side contacts, typically found in conventional solar cells. Therefore, PV devices described herein with back side contacts may allow for increased efficiency when compared to conventional solar cells.
    Type: Application
    Filed: October 23, 2009
    Publication date: May 27, 2010
    Inventors: Isik C. Kizilyalli, Melissa Archer, Harry Atwater, Thomas J. Gmitter, Gang He, Andreas Hegedus, Gregg Higashi
  • Publication number: 20100092668
    Abstract: Embodiments of the invention generally relate to a concentric gas manifold assembly used in deposition reactor or system during a vapor deposition process. In one embodiment, the manifold assembly has an upper section coupled to a middle section coupled to a lower section. The middle section contains an inlet, a manifold extending from the inlet to a passageway, and a tube extending along a central axis and containing a channel along the central axis and in fluid communication with the passageway. The lower section of the manifold assembly contains a second manifold extending from a second inlet to a second passageway and an opening concentric with the central axis. The tube extends to the opening to form a second channel between the tube and an edge of the opening. The second channel is concentric with the central axis and is in fluid communication with the second passageway.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 15, 2010
    Inventor: Andreas Hegedus
  • Publication number: 20100001316
    Abstract: Embodiments of the invention generally relate to epitaxial lift off (ELO) thin films and devices and methods used to form such films and devices. In one embodiment, a method for forming a thin film material during an epitaxial lift off process is provided which includes forming an epitaxial material over a sacrificial layer on a substrate, adhering a non-uniform support handle onto the epitaxial material, and removing the sacrificial layer during an etching process. The etching process further includes peeling the epitaxial material from the substrate while forming an etch crevice therebetween and bending the support handle to form compression in the epitaxial material during the etching process. In one example, the non-uniform support handle contains a wax film having a varying thickness.
    Type: Application
    Filed: May 29, 2009
    Publication date: January 7, 2010
    Applicant: ALTA DEVICES, INC.
    Inventors: Thomas Gmitter, Gang He, Andreas Hegedus
  • Publication number: 20090321885
    Abstract: Embodiments of the invention generally relate to epitaxial lift off (ELO) thin films and devices and methods used to form such films and devices. In one embodiment, a method for forming an ELO thin film is provided which includes depositing an epitaxial material over a sacrificial layer on a substrate, adhering a universally shrinkable support handle onto the epitaxial material, wherein the universally shrinkable support handle contains a shrinkable material, and shrinking the support handle to form tension in the support handle and compression in the epitaxial material during a shrinking process. The method further includes removing the sacrificial layer during an etching process, peeling the epitaxial material from the substrate while forming an etch crevice therebetween, and bending the support handle to have substantial curvature.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 31, 2009
    Applicant: ALTA DEVICES, INC.
    Inventors: Melissa Archer, Harry Atwater, Thomas Gmitter, Gang He, Andreas Hegedus, Gregg Higashi, Stewart Sonnenfeldt
  • Publication number: 20090321881
    Abstract: Embodiments of the invention generally relate to epitaxial lift off (ELO) thin films and devices and methods used to form such films and devices. In one embodiment, a method for forming an ELO thin film is provided which includes depositing an epitaxial material over a sacrificial layer on a substrate, adhering a flattened, pre-curved support handle onto the epitaxial material, and removing the sacrificial layer during an etching process. The etching process includes bending the pre-curved support handle to have substantial curvature while peeling the epitaxial material from the substrate and forming an etch crevice therebetween. Compression is maintained within the epitaxial material during the etching process. The flattened, pre-curved support handle may be formed by flattening a pre-curved support material.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 31, 2009
    Applicant: ALTA DEVICES, INC.
    Inventors: Melissa Archer, Harry Atwater, Thomas Gmitter, Gang He, Andreas Hegedus, Gregg Higashi, Stewart Sonnenfeldt
  • Publication number: 20090325367
    Abstract: Embodiments of the invention generally relate to a chemical vapor deposition system and related method of use. In one embodiment, the system includes a reactor lid assembly having a body, a track assembly having a body and a guide path located along the body, and a heating assembly operable to heat the substrate as the substrate moves along the guide path. The body of the lid assembly and the body of the track assembly are coupled together to form a gap that is configured to receive a substrate. In another embodiment, a method of forming layers on a substrate using the chemical vapor deposition system includes introducing the substrate into a guide path, depositing a first layer on the substrate and depositing a second layer on the substrate, while the substrate moves along the guide path; and preventing mixing of gases between the first deposition step and the second deposition step.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 31, 2009
    Applicant: ALTA DEVICES, INC.
    Inventors: Gang He, Gregg Higashi, Khurshed Sorabji, Roger Hamamjy, Andreas Hegedus, Melissa Archer, Harry Atwater, Stewart Sonnenfeldt
  • Publication number: 20090321886
    Abstract: Embodiments of the invention generally relate to epitaxial lift off (ELO) thin films and devices and methods used to form such films and devices. In one embodiment, a method for forming an ELO thin film is provided which includes depositing an epitaxial material over a sacrificial layer on a substrate, adhering a unidirectionally induced-shrinkage support handle onto the epitaxial material, and shrinking the support handle tangential to reinforcement fibers therein to form tension in the support handle and compression in the epitaxial material during the shrinking process. The unidirectionally induced-shrinkage support handle contains a shrinkable material and reinforcement fibers extending unidirectional throughout the shrinkable material. The method further includes removing the sacrificial layer during an etching process, peeling the epitaxial material from the substrate while forming an etch crevice therebetween, and bending the support handle to have substantial curvature.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 31, 2009
    Applicant: ALTA DEVICES, INC.
    Inventors: Thomas Gmitter, Gang He, Andreas Hegedus
  • Publication number: 20090324379
    Abstract: Embodiments of the invention generally relate to a levitating substrate carrier or support. In one embodiment, a substrate carrier for supporting and carrying at least one substrate or wafer is provided which includes a substrate carrier body containing an upper surface and a lower surface, and at least one indentation pocket disposed within the lower surface. In another embodiment, the substrate carrier includes at least open indentation area within the upper surface, and at least two indentation pockets disposed within the lower surface. Each indentation pocket may be rectangular and have four side walls extending substantially perpendicular to the lower surface.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 31, 2009
    Applicant: ALTA DEVICES, INC.
    Inventors: Gang He, Gregg Higashi, Khurshed Sorabji, Roger Hamamjy, Andreas Hegedus, Melissa Archer, Harry Atwater, Stewart Sonnenfeldt
  • Publication number: 20080025368
    Abstract: Methods and apparatus for measuring substrate uniformity is provided. The invention includes placing a substrate in a thermal processing chamber, rotating the substrate while the substrate is heated, measuring a temperature of the substrate at a plurality of radial locations as the substrate rotates, correlating each temperature measurement with a location on the substrate, and generating a temperature contour map for the substrate based on the correlated temperature measurements. Numerous other aspects are provided.
    Type: Application
    Filed: July 30, 2007
    Publication date: January 31, 2008
    Inventors: WOLFGANG ADERHOLD, Andreas Hegedus, Nir Merry
  • Publication number: 20070257191
    Abstract: A method for process monitoring includes receiving a sample having a first layer that is at least partially conductive and a second layer formed over the first layer, following production of contact openings in the second layer by an etch process, the contact openings including a plurality of test openings having different, respective transverse dimensions. A beam of charged particles is directed to irradiate the test openings. In response to the beam, at least one of a specimen current flowing through the first layer and a total yield of electrons emitted from a surface of the sample is measured, thus producing an etch indicator signal. The etch indicator signal is analyzed as a function of the transverse dimensions of the test openings so as to assess a characteristic of the etch process.
    Type: Application
    Filed: July 17, 2007
    Publication date: November 8, 2007
    Inventors: Alexander Kadyshevitch, Christopher Talbot, Dmitry Shur, Andreas Hegedus
  • Publication number: 20070093013
    Abstract: A method for fabricating a gate dielectric of a field effect transistor is disclosed herein. In one embodiment, the method includes the steps of removing a native oxide layer, forming an oxide layer, forming a gate dielectric layer over the oxide layer, forming an oxide layer over the gate dielectric layer, and annealing the layers and underlying thermal oxide/silicon interface. Optionally, the oxide layer may be nitridized prior to forming the gate dielectric layer. In one embodiment, at least portions of the method are performed using at least one processing reactor arranged on a cluster tool. In one embodiment, the oxide layer on the substrate is formed by depositing the oxide layer and the oxide layer on the gate dielectric layer is formed by oxidizing at least a portion of the gate dielectric layer using an oxygen-containing plasma.
    Type: Application
    Filed: May 5, 2006
    Publication date: April 26, 2007
    Inventors: Thai Chua, Cory Czarnik, Andreas Hegedus, Christopher Olsen, Khaled Ahmed, Philip Kraus
  • Publication number: 20070020783
    Abstract: A thermal processing system and method including scanning a line beam of intense radiation in a direction transverse to the line direction for thermally processing a wafer with a localized effectively pulsed beam of radiant energy. The thickness of the wafer is two-dimensionally mapped and the map is used to control the degree of thermal processing, for example, the intensity of radiation in the line beam to increase the uniformity. The processing may include selective etching of a pre-existing layer or depositing more material by chemical vapor deposition.
    Type: Application
    Filed: September 18, 2006
    Publication date: January 25, 2007
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Andreas HEGEDUS
  • Publication number: 20060289504
    Abstract: A thermal processing system and method including scanning a line beam of intense radiation in a direction transverse to the line direction for thermally processing a wafer with a localized effectively pulsed beam of radiant energy. The thickness of the wafer is two-dimensionally mapped and the map is used to control the degree of thermal processing, for example, the intensity of radiation in the line beam to increase the uniformity. The processing may include selective etching of a pre-existing layer or depositing more material by chemical vapor deposition.
    Type: Application
    Filed: June 13, 2005
    Publication date: December 28, 2006
    Inventor: Andreas Hegedus
  • Publication number: 20060156979
    Abstract: Aspects of the invention include a method and apparatus for processing a substrate using a multi-chamber processing system (e.g., a cluster tool) adapted to process substrates in one or more batch and/or single substrate processing chambers to increase the system throughput. In one embodiment, a system is configured to perform a substrate processing sequence that contains batch processing chambers only, or batch and single substrate processing chambers, to optimize throughput and minimize processing defects due to exposure to a contaminating environment. In one embodiment, a batch processing chamber is used to increase the system throughput by performing a process recipe step that is disproportionately long compared to other process recipe steps in the substrate processing sequence that are performed on the cluster tool. In another embodiment, two or more batch chambers are used to process multiple substrates using one or more of the disproportionately long processing steps in a processing sequence.
    Type: Application
    Filed: November 22, 2005
    Publication date: July 20, 2006
    Inventors: Randhir Thakur, Steve Ghanayem, Joseph Yudovsky, Aaron Webb, Adam Brailove, Nir Merry, Vinay Shah, Andreas Hegedus
  • Publication number: 20060113471
    Abstract: A method for process monitoring includes receiving a sample having a first layer that is at least partially conductive and a second layer formed over the first layer, following production of contact openings in the second layer by an etch process, the contact openings including a plurality of test openings having different, respective transverse dimensions. A beam of charged particles is directed to irradiate the test openings. In response to the beam, at least one of a specimen current flowing through the first layer and a total yield of electrons emitted from a surface of the sample is measured, thus producing an etch indicator signal. The etch indicator signal is analyzed as a function of the transverse dimensions of the test openings so as to assess a characteristic of the etch process.
    Type: Application
    Filed: July 13, 2005
    Publication date: June 1, 2006
    Inventors: Alexander Kadyshevitch, Christopher Talbot, Dmitry Shur, Andreas Hegedus
  • Publication number: 20060029747
    Abstract: The amount of atoms diffused into a substrate may be made uniform or the thickness of a thin film may be made uniform in a low species utilization process by stopping the flow of gas into a reaction chamber during the low species utilization process. Stopping the flow of gas into a reaction chamber may entail closing the gate valve (the valve to the vacuum pump), stabilizing the pressure within the reaction chamber, and maintaining the stabilized pressure while stopping the gas flowing into the chamber. Low species utilization processes include the diffusion of nitrogen into silicon dioxide gate dielectric layers by decoupled plasma nitridation (DPN), the deposition of a silicon dioxide film by rapid thermal processing (RTP) or chemical vapor deposition (CVD), and the deposition of silicon epitaxial layers by CVD.
    Type: Application
    Filed: August 9, 2004
    Publication date: February 9, 2006
    Inventors: James Cruse, Andreas Hegedus, Satheesh Kuppurao
  • Publication number: 20060018639
    Abstract: A method and apparatus for rapid thermal annealing comprising a plurality of lamps affixed to a lid of the chamber that provide at least one wavelength of light, a laser source extending into the chamber, a substrate support positioned within a base of the chamber, an edge ring affixed to the substrate support, and a gas distribution assembly in communication with the lid and the base of the chamber. A method and apparatus for rapid thermal annealing comprising a plurality of lamps comprising regional control of the lamps and a cooling gas distribution system affixed to a lid of the chamber, a heated substrate support with magnetic levitation extending through a base of the chamber, an edge ring affixed to the substrate support, and a gas distribution assembly in communication with the lid and the base of the chamber.
    Type: Application
    Filed: July 22, 2005
    Publication date: January 26, 2006
    Inventors: Sundar Ramamurthy, Andreas Hegedus, Randhir Thakur
  • Publication number: 20050173657
    Abstract: A method for process monitoring includes receiving a sample having a first layer that is at least partially conductive and a second layer formed over the first layer, following production of contact openings in the second layer by an etch process, the contact openings including a plurality of test openings having different, respective transverse dimensions. A beam of charged particles is directed to irradiate the test openings. In response to the beam, at least one of a specimen current flowing through the first layer and a total yield of electrons emitted from a surface of the sample is measured, thus producing an etch indicator signal. The etch indicator signal is analyzed as a function of the transverse dimensions of the test openings so as to assess a characteristic of the etch process.
    Type: Application
    Filed: February 3, 2005
    Publication date: August 11, 2005
    Inventors: Alexander Kadyshevitch, Chris Talbot, Dmitry Shur, Andreas Hegedus