Patents by Inventor Andrew Gibson

Andrew Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170173879
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The exit of the nozzle may include a number of concentric rings, where each of which may be selectively opened or closed during extrusion to control extrusion properties such as a volume of extrudate or a mixture of material exiting the nozzle.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173692
    Abstract: In an aspect, a printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. An ultrasonic vibrator is incorporated into the printer to improve the printing process, e.g., by disrupting a passivation layer on the deposited material to improve interlayer bonding, and to prevent adhesion of the metallic build material to a nozzle and other printer components.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Anastasios John Hart, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173878
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Anastasios John Hart, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173695
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material such as a bulk metallic glass. A thermal history of the object may be maintained, e.g., on a voxel-by-voxel basis in order to maintain a thermal budget throughout the object suitable for preserving the amorphous, uncrystallized state of the bulk metallic glass, and to provide a record for prospective use and analysis of the object.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Christopher Allan Schuh, Michael Andrew Gibson
  • Publication number: 20170173693
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. Joule heating is applied to an interface between adjacent layers of the object by creating an electrical circuit across the interface and applying pulsed current sufficient to join the metallic build material across the adjacent layers.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173877
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. A former extending from a nozzle of the printer supplements a layer fusion process by applying a normal force on new material as it is deposited to form the object. The former may use a variety of techniques such as heat and rolling to improve physical bonding between layers.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Anastasios John Hart, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173694
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a bulk metallic glass. A shearing engine within a feed path for the bulk metallic glass actively induces a shearing displacement of the bulk metallic glass to mitigate crystallization, more specifically to extend processing time for handling the bulk metallic glass at elevated temperatures.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Anastasios John Hart, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173697
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a bulk metallic glass build material. By using thermally mismatched bulk metallic glasses for an object and adjacent support structures, the interface layer between these structures can be melted and crystallized to create a more brittle interface that facilitates removal of the support structure from the object after fabrication.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Michael Andrew Gibson
  • Patent number: 9680831
    Abstract: Methods and apparatus for providing rule-based access to data stored on wearable devices are provided. A wearable computing device can store data that includes data about a wearer of the wearable computing device. The wearable computing device can receive a request for a portion of the stored data. The wearable computing device can determine a designated role associated with the request for the portion of the stored data. The wearable computing device can determine one or more rules regarding access to the portion of the stored data based on the designated role. The wearable computing device can determine a response to the request for the portion of the stored data by at least: determining whether the request is validated by at least applying the one or more rules to the request, and after determining that the request is validated, providing the requested portion of the stored data.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: June 13, 2017
    Assignee: Verily Life Sciences LLC
    Inventors: Sarel Kobus Jooste, David Andrew Gibson
  • Publication number: 20170100134
    Abstract: Instruments for use in anterior approach total hip arthroplasty. Instruments according to certain embodiments of the invention connect to a shaping member such as a broach, reamer or osteotome that is used to prepare the intramedullary canal of a desired femur or other bone for total hip arthroplasty. Such an instrument according to such embodiments can be configurable to allow operation on either the left or right leg, and in doing so to provide lateral offset and anterior offset of the instrument handle relative to the shaping member so that the patient's gut, musculature or other bodily portions may be avoided while still providing desired leverage and control over the shaping member to prepare the intramedullary canal.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 13, 2017
    Applicant: Smith & Nephew, Inc.
    Inventors: Jeffrey Andrew Sharp, Luke Andrew Gibson, David Clark Kelman
  • Patent number: 9615834
    Abstract: Patient-matched surgical instruments, and methods for making patient-matched surgical instruments, may include patient-matched surgical instruments having an anatomy facing side with several discrete, physically separate anatomy contacting portions configured to match the anatomy of a particular patient. The anatomy contacting portions may be one or more of non-uniform in distribution, non-uniform in shape or non-uniform in surface area.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 11, 2017
    Assignee: Smith & Nephew, Inc.
    Inventors: Aashiish Agnihotri, Patrick Brian Conway, David L. Evans, Luke Andrew Gibson, Jennifer Allyn Griffin, Michael Dean Hughes, David Timothy Mehl, Abraham Biglari Salehi, Jeffrey Andrew Sharp, Maroun Hanna Tarsha, Andrew Justin Wald, Thomas S. Wolfe
  • Publication number: 20170086857
    Abstract: A patient-matched cutting block including a surface or point contact features adapted to at least partially conform to or reference a patient specific anatomy. The cutting block having guide slots configured for guiding the movement of cutting tools relative to the patient specific anatomy or features configured to mate to and guide standard cutting guides relative to patient specific anatomy in order to form plateau and eminence resections of the patient specific anatomy.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 30, 2017
    Inventors: Zachary Christopher Wilkinson, Brian W. McKinnon, David Timothy Mehl, Luke Andrew Gibson, Scott Kennedy Laster
  • Patent number: 9526512
    Abstract: Instruments for use in anterior approach total hip arthroplasty. Instruments according to certain embodiments of the invention connect to a shaping member such as a broach, reamer or osteotome that is used to prepare the intramedullary canal of a desired femur or other bone for total hip arthroplasty. Such an instrument according to such embodiments can be configurable to allow operation on either the left or right leg, and in doing so to provide lateral offset and anterior offset of the instrument handle relative to the shaping member so that the patient's gut, musculature or other bodily portions may be avoided while still providing desired leverage and control over the shaping member to prepare the intramedullary canal.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: December 27, 2016
    Assignee: Smith & Nephew, Inc.
    Inventors: Jeffrey Andrew Sharp, Luke Andrew Gibson, David C. Kelman
  • Patent number: 9492183
    Abstract: A patient-matched cutting block including a surface or point contact features adapted to at least partially conform to or reference a patient specific anatomy. The cutting block having guide slots configured for guiding the movement of cutting tools relative to the patient specific anatomy or features configured to mate to and guide standard cutting guides relative to patient specific anatomy in order to form plateau and eminence resections of the patient specific anatomy.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: November 15, 2016
    Assignee: Smith & Nephew, Inc.
    Inventors: Zachary Christopher Wilkinson, Brian W. McKinnon, David Timothy Mehl, Luke Andrew Gibson, Scott Kennedy Laster
  • Publication number: 20160287268
    Abstract: Patient-matched surgical instruments and associated methods having an anatomy facing side including several discrete, physically separate anatomy contacting portions configured to match the anatomy of a particular patient and including one or more of non-uniform in distribution, non-uniform in shape and non-uniform in surface area.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 6, 2016
    Inventors: Michael Dean Hughes, Abraham Biglari Salehi, Aashiish Agnihotri, Luke Andrew Gibson, David L. Evans, Jeffrey A. Sharp, Thomas S. Wolfe
  • Publication number: 20160262772
    Abstract: Systems and methods to provide patient-specific cutting blocks that allow for bone resurfacing procedures, such as milling or burring, with simplified devices. A computer assisted surgical cutting block is produced having a surface region that matches with the surface region of a patient's bone to be altered. A cutting tool may be provided having a contoured bone mating surface and a contoured and patient-specific shaped cutting guide surface located in a plane above the bone mating surface. One or more channels are provided in the cutting block, and as the surgeon moves the cutting tool (a milling or burring, for example) in the channels, the tool cuts the bone both laterally along the surface of the bone and vertically into the bone according to the cutting guide surface and other preselected surface features of the cutting block.
    Type: Application
    Filed: May 24, 2016
    Publication date: September 15, 2016
    Inventors: Luke Andrew Gibson, Jeffrey A. Sharp
  • Patent number: 9439781
    Abstract: Systems, devices, and methods are provided for implanting and aligning orthopedic implants. A patient-matched alignment guide is used to orient tools and implants intraoperatively. In certain embodiments, the systems, devices, and methods include an orthopedic guide comprising a body having a bottom surface, wherein at least a portion of the bottom surface has predetermined surface characteristics that correspond to respective characteristics of a patient's bony anatomy, and a pliable flange that extends from the bottom surface and is shaped to be received within an undercut of an implant to releasably couple the orthopedic guide to the implant.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: September 13, 2016
    Assignee: Smith & Nephew, Inc.
    Inventor: Luke Andrew Gibson
  • Patent number: 9386994
    Abstract: Patient-matched surgical instruments, and methods for making patient-matched surgical instruments, may include patient-matched surgical instruments having an anatomy facing side with several discrete, physically separate anatomy contacting portions configured to match the anatomy of a particular patient. The anatomy contacting portions may be one or more of non-uniform in distribution, non-uniform in shape or non-uniform in surface area.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: July 12, 2016
    Assignee: Smith & Nephew, Inc.
    Inventors: Aashiish Agnihotri, Patrick Brian Conway, David L. Evans, Luke Andrew Gibson, Jennifer Allyn Griffin, Michael Dean Hughes, David Timothy Mehl, Abraham Biglari Salehi, Jeffrey Andrew Sharp, Maroun Hanna Tarsha, Andrew Justin Wald, Thomas S. Wolfe
  • Publication number: 20160176884
    Abstract: The present invention is directed to processes for preparing beta 3 agonists of Formula (I) and Formula (II) and their intermediates. The beta 3 agonists are useful in the treatment of certain disorders, including overactive bladder, urinary incontinence, and urinary urgency.
    Type: Application
    Filed: March 1, 2016
    Publication date: June 23, 2016
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: John Y.L. Chung, Kevin Campos, Edward Cleator, Robert F. Dunn, Andrew Gibson, R. Scott Hoerrner, Stephen Keen, Dave Lieberman, Zhuqing Liu, Joseph Lynch, Kevin M. Maloney, Feng Xu, Nobuyoshi Yasuda, Naoki Yoshikawa, Yong-Li Zhong
  • Publication number: 20160175111
    Abstract: Systems, devices, and methods are provided for aligning acetabular implants. A patient-matched acetabular alignment tool is used to orient tools and implants intraoperatively. The patient-matched acetabular alignment tool includes a mounting member and leg members which are configured based on the particular patient's anatomic landmark sites (e.g., acetabular bony landmarks). The leg members are attached to the mounting member and configured to connect with a respective anatomic landmark site to achieve a desired implant angle and axis. For example, the leg members may form a tripod support base through which an acetabular shell may be inserted into the patient's acetabulum at desired angles of version and inclination. In some embodiments, the leg members may be retractable and expandable with respect to the mounting member, thereby providing a tool with reduced profile for inserting the device in the patient's soft tissue.
    Type: Application
    Filed: February 29, 2016
    Publication date: June 23, 2016
    Inventors: Luke Andrew Gibson, Lauren Christina Jasper, Phillip S. Frederick