Patents by Inventor Andrew P. Washabaugh

Andrew P. Washabaugh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130014589
    Abstract: An apparatus for the nondestructive measurement of materials that includes at least two layers of electrical conductors. Within each layer, a meandering primary winding is used to create a magnetic field for interrogating a test material while sense elements or conducting loops within each meander provide a directional measurement of the test material condition. In successive layers extended portions of the meanders are rotated so that the sense elements provide material condition in different orientations without requiring movement of the test circuit or apparatus. Multidirectional permeability measurements are used to assess the stress or torque on a component. These measurements are combined in a manner that removes temperature effects and hysteresis on the property measurements. This can be accomplished through a correction factor that accounts for the temperature dependence.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 17, 2013
    Inventors: Yanko K. Sheiretov, Neil J. Goldfine, Todd M. Dunford, Scott A. Denenberg, David C. Grundy, Darrel E. Schlicker, Andrew P. Washabaugh, Karen E. Walrath
  • Patent number: 8237433
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: August 7, 2012
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Ian C. Shay, Darrell E. Schlicker, Andrew P. Washabaugh, David C. Grundy, Robert J. Lyons, Vladimir A. Zilberstein
  • Patent number: 8222897
    Abstract: An apparatus for the nondestructive measurement of materials that includes at least two layers of electrical conductors. Within each layer, a meandering primary winding is used to create a magnetic field for interrogating a test material while sense elements or conducting loops within each meander provide a directional measurement of the test material condition in different orientations without requiring movement of the test circuit or apparatus. In a bidirectional implementation the meanders are oriented 90° apart while in a quadridirectional implementation the meanders are orientated at ?45, 0, 45, and 90°. Multidirectional permeability measurements are used to assess the stress or torque on a component. These measurements are combined in a manner that removes temperature effects and hysteresis on the property measurements. This can be accomplished through a correction factor that accounts for the temperature dependence.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: July 17, 2012
    Assignee: JENTEK Sensors, Inc.
    Inventors: Yanko K. Sheiretov, Neil J. Goldfine, Todd M. Dunford, Scott A. Denenberg, David C. Grundy, Darrell E. Schlicker, Andrew P. Washabaugh, Karen E. Walrath
  • Publication number: 20120126803
    Abstract: Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 24, 2012
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Andrew P. Washabaugh, Robert Lyons, Zachary Thomas, Daivd A. Jablonski, Christopher Martin
  • Publication number: 20120013334
    Abstract: Magnetic field sensor probes are disclosed which comprise primary or drive windings having a plurality of current carrying segments. The relative magnitude and direction of current in each segment are adjusted so that the resulting interrogating magnetic field follows a desired spatial distribution. By changing the current in each segment, more than one spatial distribution for the magnetic field can be imposed within the same sensor footprint. Example envelopes for the current distributions approximate a sinusoid in Cartesian coordinates or a first-order Bessel function in polar coordinates. One or more sensing elements are used to determine the response of a test material to the magnetic field. These sense elements can be configured into linear or circumferential arrays.
    Type: Application
    Filed: September 28, 2011
    Publication date: January 19, 2012
    Applicant: JENTEK Sensors, Inc.
    Inventors: Yanko Konstantinov Sheiretov, Neil J. Goldfine, Andrew P. Washabaugh, Darrell E. Schlicker
  • Publication number: 20110210724
    Abstract: A substantially planar eddy-current sensor having durability enhancing pillars in an active region is provided. The pillars are distributed and sized so as to have limited effect on the sensor's performance. When the sensor is mounted on a component such that the sensor experiences forces on a top and bottom surface, the pillars bear the load reducing the load bore by the active elements (e.g., drive winding, sense elements). A sensor with redundant drive windings and/or redundant sense elements is disclosed. The redundant elements may be connected to separate electronics. Another aspect relates to providing a reference transformer for calibration of a sensor. The secondary windings of the reference transformer are connected in series with the sense elements of the sensor to be calibrated. Transimpedance measurements are made when the drive winding of the reference transformer is excited. The measurements are used to correct transimpedance measurements made when the drive winding of the sensor is excited.
    Type: Application
    Filed: February 9, 2011
    Publication date: September 1, 2011
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, David C. Grundy, Darrell E. Schlicker, Andrew P. Washabaugh
  • Patent number: 7994781
    Abstract: Reference standards or articles having prescribed levels of damage are fabricated by monitoring an electrical property of the article material, mechanically loading the article, and removing the load when a change in electrical properties indicates a prescribed level of damage. The electrical property is measured with an electromagnetic sensor, such as a flexible eddy current sensor, attached to a material surface, which may be between layers of the article material. The damage may be in the form of a fatigue crack or a change in the mechanical stress underneath the sensor. The shape of the article material may be adjusted to concentrate the stress so that the damage initiates under the sensor. Examples adjustments to the article shape include the use of dogbone geometries with thin center sections, reinforcement ribs on the edges of the article, and radius cut-outs in the vicinity of the thin section.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 9, 2011
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Karen E. Walrath, Andrew P. Washabaugh
  • Publication number: 20110163742
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 7, 2011
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Ian C. Shay, Darrell E. Schlicker, Andrew P. Washabaugh, David C. Grundy, Robert J. Lyons, Vladimir A. Zilberstein
  • Publication number: 20110060568
    Abstract: A framework for adaptively managing the life of components. A sensor provides non-destructive test data obtained from inspecting a component. The inspection data may be filtered using reference signatures and by subtracting a baseline. The filtered inspection data and other inspection data for the component is analyzed to locate flaws and estimate the current condition of the component. The current condition may then be used to predict the component's condition at a future time or to predict a future time at which the component's condition will have deteriorated to a certain level. A current condition may be input to a precomputed database to look up the future condition or time. The future condition or time is described by a probability distribution which may be used to assess the risk of component failure. The assessed risk may be used to determine whether the part should continue in service, be replaced or repaired.
    Type: Application
    Filed: June 7, 2010
    Publication date: March 10, 2011
    Applicant: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Yanko K. Sheiretov, Andrew P. Washabaugh, Vladimir A. Zilberstein, David C. Grundy, Robert J. Lyons, David A. Jablonski, Floyd W. Spencer
  • Publication number: 20110054806
    Abstract: A framework for adaptively managing the life of components. A sensor provides non-destructive test data obtained from inspecting a component. The inspection data may be filtered using reference signatures and by subtracting a baseline. The filtered inspection data and other inspection data for the component is analyzed to locate flaws and estimate the current condition of the component. The current condition may then be used to predict the component's condition at a future time or to predict a future time at which the component's condition will have deteriorated to a certain level. A current condition may be input to a precomputed database to look up the future condition or time. The future condition or time is described by a probability distribution which may be used to assess the risk of component failure. The assessed risk may be used to determine whether the part should continue in service, be replaced or repaired.
    Type: Application
    Filed: June 7, 2010
    Publication date: March 3, 2011
    Applicant: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Yanko K. Sheiretov, Andrew P. Washabaugh, Vladimir A. Ziberstein, David C. Grundy, Robert J. Lyons, David A. Jablonski, Floyd W. Spencer
  • Patent number: 7876094
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: January 25, 2011
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Ian C. Shay, Darrell E. Schlicker, Andrew P. Washabaugh, David C. Grundy, Robert J. Lyons, Vladimir A. Zilberstein, Vladimir Tsukernik
  • Patent number: 7812601
    Abstract: Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: October 12, 2010
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Andrew P. Washabaugh, Yanko K. Sheiretov, Darrell E. Schlicker, Robert J. Lyons, Mark D. Windoloski, Christopher A. Craven, Vladimir B. Tsukernik, David C. Grundy
  • Patent number: 7696748
    Abstract: Methods and apparatus are described for absolute electrical property measurement of materials. This is accomplished with magnetic and electric field based sensors and sensor array geometries that can be modeled accurately and with impedance instrumentation that permits accurate measurements of the in-phase and quadrature phase signal components. A dithering calibration method is also described which allows the measurement to account for background material noise variations. Methods are also described for accounting for noise factors in sensor design and selection of the optimal operating conditions which can minimize the error bounds for material property estimates. Example application of these methods to automated engine disk slot inspection and assessment of the mechanical condition of dielectric materials are presented.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: April 13, 2010
    Assignee: Jentek Sensors, Inc.
    Inventors: Darrell E. Schlicker, Neil J. Goldfine, David C. Grundy, Robert J. Lyons, Vladimir A. Zilberstein, Andrew P. Washabaugh, Vladimir Tsukernik, Mark D. Windoloski, Ian C. Shay
  • Publication number: 20100045277
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Application
    Filed: April 4, 2008
    Publication date: February 25, 2010
    Inventors: Neil J. Goldfine, Ian C. Shay, Darrell E. Schlicker, Andrew P. Washabaugh, David C. Grundy, Robert J. Lyons, Vladimir A. Zilberstein, Vladimir Tsukernik
  • Publication number: 20100026285
    Abstract: Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.
    Type: Application
    Filed: June 15, 2009
    Publication date: February 4, 2010
    Applicant: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Andrew P. Washabaugh, Yanko K. Sheiretov, Darrell E. Schlicker, Robert J. Lyons, Mark D. Windoloski, Christopher A. Craven, Vladimir B. Tsukernik, David C. Grundy
  • Publication number: 20090315540
    Abstract: Reference standards or articles having prescribed levels of damage are fabricated by monitoring an electrical property of the article material, mechanically loading the article, and removing the load when a change in electrical properties indicates a prescribed level of damage. The electrical property is measured with an electromagnetic sensor, such as a flexible eddy current sensor, attached to a material surface, which may be between layers of the article material. The damage may be in the form of a fatigue crack or a change in the mechanical stress underneath the sensor. The shape of the article material may be adjusted to concentrate the stress so that the damage initiates under the sensor. Examples adjustments to the article shape include the use of dogbone geometries with thin center sections, reinforcement ribs on the edges of the article, and radius cut-outs in the vicinity of the thin section.
    Type: Application
    Filed: August 3, 2009
    Publication date: December 24, 2009
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Karen E. Walrath, Andrew P. Washabaugh
  • Patent number: 7589526
    Abstract: One of the issues with planar eddy-current sensors is the placement of the current return for the primary winding. Often the ends of the primary winding are spatially distant from one another, which creates an extraneous and large inductive loop that can influence the measurements. A sensor geometry featuring a primary winding that reduces the effect of this inductive loop is presented. The primary winding may include a plurality of parallel extended winding segments. The segments further include adjacent individual drive coils. Current flows through individual drive coils in an alternating fashion. Current flows through adjacent drive coil portions in a common direction, thereby imposing a spatially periodic magnetic field with at least two periods.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: September 15, 2009
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Karen E. Walrath, Andrew P. Washabaugh
  • Patent number: 7533575
    Abstract: Magnetic or electric field sensors are mounted against a material surface and used for stress, strain, and load monitoring of rotating components such as vehicle drive trains. The stationary sensors are mounted at multiple locations around the component and used assess the stress on the component at multiple rotational positions. The sensor response is typically converted into a material property, such as magnetic permeability or electrical conductivity, which accounts for any coating thickness that may be present between the sensor and mounting surface. The sensors are not in direct contact with the rotating component and are typically mounted on an annular material or ring that encircles the rotating component. Measurements of the annular material properties, such as the stress, are related to the stress on the rotating component and discrete features on the component.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: May 19, 2009
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, David C. Grundy, Yanko K. Sheiretov, Leandro M. Lorilla, Vladimir A. Zilberstein, Volker Weiss, J. Timothy Lovett, Andrew P. Washabaugh
  • Patent number: 7528598
    Abstract: Damage and usage conditions in the vicinity of fasteners in joined structures are nondestructively evaluated using the fasteners themselves. Sensors or sensor conductors are embedded in the fasteners or integrated within the fastener construct, either in the clearance gap between the fastener and the structure material or as an insert inside the shaft or pin of the fastener. The response of the material to an interrogating magnetic or electric field is then measured with drive and sense electrodes both incorporated into the fastener or with either drive or sense electrodes external to the fastener on the material surface. In another configuration, an electric current is applied to one or more fasteners and the electric potential is measured at locations typically between the driven electrodes applying the current. The potential is measured circumferentially around the fastener at locations on the material surface or across pairs of fasteners throughout or along the joint.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: May 5, 2009
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, David C. Grundy, Andrew P. Washabaugh, Yanko K. Sheiretov, Darrell E. Schlicker
  • Patent number: 7526964
    Abstract: Methods are described for the use of conformable eddy-current sensors and sensor arrays for characterizing residual stresses and applied loads in materials. In addition, for magnetizable materials such as steels, these methods can be used to determine carbide content and to inspect for grinding burn damage. The sensor arrays can be mounted inside or scanned across the inner surface of test articles and hollow fasteners to monitor stress distributions. A technique for placing eddy-current coils around magnetizable fasteners for load distribution monitoring is also disclosed.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: May 5, 2009
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, James M. Fisher, David C. Grundy, Darrell E. Schlicker, Vladimir Tsukernik, Robert J. Lyons, Ian C. Shay, Andrew P. Washabaugh