Patents by Inventor Andrew P. Washabaugh

Andrew P. Washabaugh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020105325
    Abstract: A sensor that characterizes welds in materials. The sensor includes a meandering drive winding with at least three extended portions and at least one sensing element placed between an adjacent pair of extended portions. A time varying electric current is passed through the extended portions to form a magnetic field. The sensor is placed in proximity to the test material and translated over the weld region. An electrical property of the weld region is measured for each sensing element location. The weld quality is determined using a feature of the electrical property measurement and location.
    Type: Application
    Filed: January 15, 2002
    Publication date: August 8, 2002
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Darrell E. Schlicker, David C. Grundy, Ian Shay, Andrew P. Washabaugh
  • Publication number: 20020075006
    Abstract: A method is disclosed for processing, optimization, calibration, and display of measured dielectrometry signals. A property estimator is coupled by way of instrumentation to an electrode structure and translates sensed electromagnetic responses into estimates of one or more preselected properties or dimensions of the material, such as dielectric permittivity and ohmic conductivity, layer thickness, or other physical properties that affect dielectric properties, or presence of other lossy dielectric or metallic objects. A dielectrometry sensor is disclosed which can be connected in various ways to have different effective penetration depths of electric fields but with all configurations having the same air-gap, fluid gap, or shim lift-off height, thereby greatly improving the performance of the property estimators by decreasing the number of unknowns.
    Type: Application
    Filed: January 7, 2002
    Publication date: June 20, 2002
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Markus Zahn, Alexander V. Mamishev, Darrell E. Schlicker, Andrew P. Washabaugh
  • Patent number: 6380747
    Abstract: A method is disclosed for processing, optimization, calibration, and display of measured dielectrometry signals. A property estimator is coupled by way of instrumentation to an electrode structure and translates sensed electromagnetic responses into estimates of one or more preselected properties or dimensions of the material, such as dielectric permittivity and ohmic conductivity, layer thickness, or other physical properties that affect dielectric properties, or presence of other lossy dielectric or metallic objects. A dielectrometry sensor is disclosed which can be connected in various ways to have different effective penetration depths of electric fields but with all configurations having the same air-gap, fluid gap, or shim lift-off height, thereby greatly improving the performance of the property estimators by decreasing the number of unknowns.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: April 30, 2002
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Markus Zahn, Alexander V. Mamishev, Darrell E. Schlicker, Andrew P. Washabaugh
  • Patent number: 6188218
    Abstract: An instrument and method for providing accurate and reproducible measurement of absolute properties of a material under test without using conductivity or crack calibration standards. The instrument has a sensor designed to minimize unmodeled parasitic effects. To accomplish this, the sensor has one or more of the following features: dummy secondary elements located at the ends of a primary winding meandering, setting back of the sensing element from a connecting portion of the primary winding, or various grouping of secondary elements. The sensing elements of the sensor can be connected individually or in differential mode to gather absolute or differential sensitivity measurements. In addition, the instrumentation is configured such that a significant portion of the instrumentation electronics is placed as close to the sensor head to provide independently controllable amplification of the measurement signals therein reducing noise and other non-modeled effects.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: February 13, 2001
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Andrew P. Washabaugh
  • Patent number: 5863468
    Abstract: Calcined ceramic powder is made by blending a precursor powder with a form of carbon such as carbon black and heating the blend in an oxygenated atmosphere. The carbon acts as a separator, preventing coalescence of the percursor powder during the calcining process. The blend is characterized by the presence of interstitial spacing between the particles of the carbon powder and the precursor powder. The carbon is eventually oxidized to carbon dioxide and/or carbon monoxide and volatilizes as such, leaving behind the calcined ceramic powder. In a preferred embodiment, the heating is effected by microwave radiation. The carbon absorbs the microwave radiation, heating up the precursor powder and calcining it to form the ceramic powder. Once all the carbon has been oxidized, no more microwave radiation is absorbed, and the heating stops, making the process self-limiting.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: January 26, 1999
    Assignee: Raychem Corporation
    Inventors: Pawel Czubarow, Mark W. Ellsworth, Karin M. Kinsman, Eugen L. Kurjatko, Andrew P. Washabaugh