Patents by Inventor Andrew Philip Shapiro

Andrew Philip Shapiro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190136761
    Abstract: An integrated fuel cell and engine combustor assembly includes an engine combustor having a combustion chamber fluidly coupled with a compressor and a turbine. The assembly also includes a fuel cell stack circumferentially extending around the combustion chamber of the combustor. The fuel cell stack includes fuel cells configured to generate electric current. The fuel cell stack is positioned to receive discharged air from the compressor and fuel from a fuel manifold. The fuel cells in the fuel cell stack generate electric current using the discharged air and at least some of the fuel. The fuel cell stack is positioned to radially direct partially oxidized fuel from the fuel cells into the combustion chamber of the combustor. The combustor combusts the partially oxidized fuel into one or more gaseous combustion products that are directed into and drive the downstream turbine.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 9, 2019
    Inventors: Andrew Philip Shapiro, Narendra Digamber Joshi
  • Patent number: 10256496
    Abstract: A power generation system including a first fuel cell configured to generate a first anode tail gas stream is presented. The system includes at least one fuel reformer configured to receive the first anode tail gas stream, mix the first anode tail gas stream with a reformer fuel stream to form a reformed stream; a splitting mechanism to split the reformed stream into a first portion and a second portion; and a fuel path configured to circulate the first portion to an anode inlet of the first fuel cell, such that the first fuel cell is configured to generate a first electric power, at least in part, by using the first portion as a fuel. The system includes a second fuel cell configured to receive the second portion, and to generate a second electric power, at least in part, by using the second portion as a fuel.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: April 9, 2019
    Assignee: General Electric Company
    Inventors: Irfan Saif Hussaini, Andrew Philip Shapiro, Matthew Joseph Alinger
  • Publication number: 20180331385
    Abstract: A system includes one or more positive fuel cell stacks configured to generate a positive portion of an electric potential and one or more negative fuel cell stacks configured to generate a negative portion of the electric potential. The system includes a positive electrical bus bar conductively coupled with the positive fuel cell stacks and configured to conduct the positive portion of the electric potential from the positive fuel cell stacks to one or more loads. The system includes a negative electrical bus bar conductively coupled with the negative fuel cell stacks and configured to conduct the negative portion of the electric potential from the negative fuel cell stacks to the one or more loads. The positive electrical bus bar is elongated and extends between the positive fuel cell stacks and the negative electrical bus bar is elongated and extends between the negative fuel cell stacks.
    Type: Application
    Filed: May 9, 2017
    Publication date: November 15, 2018
    Inventors: Darren Bawden Hickey, Irfan Saif Hussaini, Andrew Philip Shapiro, Keith Garrette Brown
  • Publication number: 20180311620
    Abstract: A multistage membrane distillation device includes a plurality of membrane distillation cells each having at least one membrane. Each membrane defines a feed space at one surface thereof and a vapor space at an opposite surface thereof, and is configured to allow a part of a feed flowing in the feed space to evaporate and pass through the membrane as a vapor phase into the vapor space where the vapor phase is condensed to a distillate including a volatile and condensable substance, and the non-evaporated feed to exit the feed space as a concentrated fluid. The device further includes a fluid connection for allowing the distillate from an ith cell to flow as a feed into the feed space of an (i+1)th cell to produce a further distillate with a higher concentration of the volatile and condensable substance. The concentrated fluid from each cell is prevented from entering the feed space of other cells.
    Type: Application
    Filed: July 8, 2016
    Publication date: November 1, 2018
    Inventors: Xianguo YU, Hui LEI, Andrew Philip SHAPIRO, Hai YANG, Rihua XIONG, Markus HANKE, Jens RUETTEN, Bernardo Alves CINELLI, Ana COSTA
  • Publication number: 20180287173
    Abstract: A formed substrate assembly includes an air flow form plate, a fuel flow form plate, and an anode. The fuel flow form plate is positioned over the air flow form plate. The fuel flow form plate partially defines a plurality of first channels. The fuel flow form plate also defines a plurality of second channels. The plurality of second channels defines a plurality of apertures, where a portion of the apertures extend from the plurality of second channels to the plurality of first channels. The anode is positioned over the fuel flow form plate. The anode partially defines the plurality of first channels such that the fuel flow form plate and the anode define the plurality of first channels. The portion of the plurality of apertures is configured to channel a flow of fuel from the plurality of second channels to the plurality of first channels.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 4, 2018
    Inventors: Andrew Philip Shapiro, Darren Bawden Hickey
  • Publication number: 20180145351
    Abstract: A fuel cell system is disclosed, which includes an anode recirculation loop including a fuel cell stack for generating power, a fuel supply device for providing a fuel to the anode recirculation loop, an air supply device for providing air to a cathode of the fuel cell stack, a voltage monitoring device for monitoring a voltage of the fuel cell stack, and an anode protection controller. The anode protection controller decreases a current drawn from the fuel cell stack by a predetermined amount whenever the voltage of the fuel cell stack drops below a predetermined voltage threshold and decreases a fuel flowrate provided to the anode recirculation loop based on the decreased current, so as to maintain a steam to carbon ratio in the anode recirculation loop above a predetermined steam to carbon ratio limit. A shutdown method for the fuel cell system are also disclosed.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 24, 2018
    Inventors: Honggang WANG, Xiangdong KONG, Andrew Philip SHAPIRO, Patrick CARROLL, John Guido PICCIRILLO
  • Publication number: 20180131020
    Abstract: Power generation systems and associated methods for generating electric power using a cascaded fuel cell are provided. The power generation system may include a first fuel cell, a second fuel cell, a splitting mechanism, a first fuel path, and a second fuel path. The First fuel cell is configured to generate first anode and first cathode tail gas streams. The splitting mechanism is configured to split the first anode tail gas stream into first and second portions. The first fuel path is configured to receive hydrocarbon fuel stream downstream of splitting mechanism, mix with the first portion to form a mixed stream, and circulate the mixed stream to the first fuel cell. The second fuel path is configured to feed the second portion to the second fuel cell. The first and second fuel cells are configured to generate electric power by using the mixed stream and the second portion respectively.
    Type: Application
    Filed: November 4, 2016
    Publication date: May 10, 2018
    Inventors: Andrew Philip Shapiro, Irfan Saif Hussaini
  • Patent number: 9819038
    Abstract: A power generation system includes a fuel cell including an anode that generates a tail gas. The system also includes a hydrocarbon fuel reforming system that mixes a hydrocarbon fuel with the fuel cell tail gas and to convert the hydrocarbon fuel and fuel tail gas into a reformed fuel stream including CO2. The reforming system further splits the reformed fuel stream into a first portion and a second portion. The system further includes a CO2 removal system coupled in flow communication with the reforming system. The system also includes a first reformed fuel path coupled to the reforming system. The first path channels the first portion of the reformed fuel stream to an anode inlet. The system further includes a second reformed fuel path coupled to the reforming system. The second path channels the second portion of the reformed fuel stream to the CO2 removal system.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: November 14, 2017
    Assignee: General Electric Company
    Inventors: Andrew Philip Shapiro, Robert James Perry, Matthew Joseph Alinger, Bruce Philip Biederman, Irfan Saif Hussaini, Irina Spiry
  • Publication number: 20170179503
    Abstract: A fuel cell system is disclosed, which includes an anode recirculation loop having a fuel cell stack for generating power, a flowmeter, a current sensor and a processor. The flowmeter is configured for measuring a fuel flow rate provided into the anode recirculation loop. The current sensor is configured for measuring a current drawn from the fuel cell stack. The processor is configured for determining a steam to carbon ratio in the anode recirculation loop based on the measured fuel flow rate and the measured current. The fuel cell system further includes a temperature sensor for measuring a temperature in the anode recirculation loop. The process is configured for determining the steam to carbon ration further based on the measured temperature. A method for operating the fuel cell system and a fuel cell power plant are also disclosed.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 22, 2017
    Inventors: Honggang WANG, Andrew Philip SHAPIRO, Patrick Hammel HART, Xiangdong KONG, Ralph TEICHMANN
  • Publication number: 20170173533
    Abstract: A reverse osmosis unit for processing a feed solution is provided. The unit includes a pressure vessel includes an inlet end, an outlet end, and a vessel body extending between the inlet end and the outlet end. The reverse osmosis unit further includes a plurality of first membrane modules positioned within the pressure vessel. Each first membrane module of the plurality of first membrane modules has a first salt permeance value. At least one second membrane module is positioned within the pressure vessel and coupled in flow communication to the plurality of first membrane modules. The at least one second membrane module has a second salt permeance value that is different from the first salt permeance value.
    Type: Application
    Filed: March 13, 2015
    Publication date: June 22, 2017
    Applicant: General Electric Company
    Inventors: Hua WANG, Hareesh Kumar Reddy KOMMEPALLI, Andrew Philip SHAPIRO
  • Patent number: 9580996
    Abstract: A method for processing a flowback composition stream from a well head includes controlling a first flow rate of the flow back composition stream to a second flow rate by regulating the flowback composition stream from a first pressure to a second pressure. The method also includes separating the flowback composition stream into a first gas stream and a condensed stream. The method includes discharging the condensed stream to a degasser and degassing a carbon dioxide rich gas from the condensed stream. The method also includes mixing the carbon dioxide rich gas stream with the first gas stream to produce a second gas stream. The method includes controlling a third flow rate of the second gas stream by regulating a third pressure of the second gas stream to a fourth pressure that is different than the third pressure.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: February 28, 2017
    Assignee: General Electric Company
    Inventors: Stephen Duane Sanborn, Imdad Imam, Andrew Philip Shapiro, John Brian McDermott, Harish Radhakrishna Acharya, Teresa Grocela Rocha, Jalal Hunain Zia, Johanna Wellington
  • Publication number: 20160305031
    Abstract: A apparatus includes a first stack having: a porous metallic current collector; a first electrode layer on the porous metallic current collector; a second electrode layer; a first electrolyte layer between the first electrode layer and the second electrode layer; a third electrode layer on the porous metallic current collector, the third electrode layer sandwiching the porous metallic current collector therebetween with the first electrode layer; a fourth electrode layer; and a second electrolyte layer between the third and the fourth electrode layers. A method includes: providing (he apparatus; applying a first electric field between the first electrode layer and the second electrode layer; applying a second electric field between the third and the fourth electrode layers; and introducing nitrogen oxide to the apparatus to be decomposed into nitrogen and oxygen in the apparatus.
    Type: Application
    Filed: November 20, 2014
    Publication date: October 20, 2016
    Inventors: Shizhong Wang, Qunjian Huang, Hai Yang, Qijia Fu, Andrew Philip Shapiro, Hua Zhang
  • Patent number: 9470080
    Abstract: A system and a method for recovering oil from an oil-bearing formation wherein the method includes providing a reverse osmosis (RO) unit comprising at least one membrane; feeding a first feed stream having a first salinity content to a first side of the membrane; and feeding a second feed stream having a second salinity content to a second side of the membrane. The method further includes discharging a retentate stream from the first side of the membrane, and discharging a product stream having a controlled salinity content from the second side of the membrane. The method furthermore includes injecting at least a portion of the product stream into the oil-bearing formation, and recovering at least a portion of the oil from the oil-bearing formation.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: October 18, 2016
    Assignee: General Electric Company
    Inventors: Hareesh Kumar Reddy Kommepalli, Andrew Philip Shapiro, Todd Alan Anderson, Hua Wang
  • Publication number: 20160260991
    Abstract: A power generation system utilizing a fuel cell is described. The system includes a fuel cell having an anode configured to generate a tail gas. The anode includes an inlet and an outlet. The system further includes a fuel path configured to divert a first portion of the anode tail gas to the inlet of the anode; and a second portion of the anode tail gas to a reciprocating engine. The associated reciprocating engine is at least partially powered by the second portion of the anode tail-gas. Another embodiment of the invention is directed to a power generation system that includes the anode and an external fuel reforming system, along with a gas splitting mechanism to divide the reformed fuel into two streams. One stream is directed back to the fuel cell anode, while another stream is used to completely or partially power an external or internal combustion engine.
    Type: Application
    Filed: March 7, 2016
    Publication date: September 8, 2016
    Inventors: Andrew Philip Shapiro, Matthew Joseph Alinger, Matthew Alexander Lehar, Bruce Philip Biederman
  • Publication number: 20160123229
    Abstract: A cooling system for providing chilled air is disclosed, including a cooling coil; an evaporator and absorber contained within a vacuum chamber; and a desiccant that absorbs water vapor from the cooling process. The system also includes an external heat source for treating the desiccant; along with a regenerator to make the desiccant re-useable. At least one heat exchanger is also included, along with a source of make-up water in communication with the cooling coil. Related processes are also disclosed, along with a gas turbine engine that includes or is arranged in association with the cooling system.
    Type: Application
    Filed: October 12, 2015
    Publication date: May 5, 2016
    Inventors: Ching-Jen Tang, Andrew Philip Shapiro
  • Publication number: 20160104906
    Abstract: A system for controlling a flow rate ratio includes a fuel cell comprising an anode for generating a tail gas and having an inlet and an outlet; a fuel reformer for mixing a fuel with the tail gas from the outlet of the anode to generate a reformed stream which is split into first and second branch streams at a splitting position, the first branch stream returned to the inlet of the anode; a cooler for removing heat from the second branch stream; a bottoming cycle including an external or internal combustion engine driven in response to the cooled second branch stream; a measuring device for measuring differential pressures of two of the main stream, the first branch stream and the second branch stream; and a controlling device for controlling a flow rate ratio of the first branch stream to the main stream in response to the measured differential pressures.
    Type: Application
    Filed: October 6, 2015
    Publication date: April 14, 2016
    Inventors: Honggang WANG, Shiguang LI, Andrew Philip SHAPIRO
  • Publication number: 20160006065
    Abstract: A power generation system including a first fuel cell configured to generate a first anode tail gas stream is presented. The system includes at least one fuel reformer configured to receive the first anode tail gas stream, mix the first anode tail gas stream with a reformer fuel stream to form a reformed stream; a splitting mechanism to split the reformed stream into a first portion and a second portion; and a fuel path configured to circulate the first portion to an anode inlet of the first fuel cell, such that the first fuel cell is configured to generate a first electric power, at least in part, by using the first portion as a fuel. The system includes a second fuel cell configured to receive the second portion, and to generate a second electric power, at least in part, by using the second portion as a fuel.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 7, 2016
    Inventors: Irfan Saif Hussaini, Andrew Philip Shapiro, Matthew Joseph Alinger
  • Publication number: 20150345035
    Abstract: A method for decomposing nitrogen oxide includes: contacting a gas stream comprising nitrogen oxide with a device, the device comprising: a first electrode, an opposite second electrode, an electrolyte between the first and the second electrodes, and a power supply; and applying in a pulse mode an electrical current from the power supply to the first and the second electrodes to decompose nitrogen oxide. An associated apparatus is also described.
    Type: Application
    Filed: May 29, 2015
    Publication date: December 3, 2015
    Inventors: Shizhong WANG, Qunjian HUANG, Hai YANG, Hua ZHANG, Andrew Philip SHAPIRO
  • Publication number: 20150345258
    Abstract: A method for processing a flowback composition stream from a well head is provided. The flowback composition stream has a first flow rate and a first pressure. Method also includes controlling the first flow rate to a second flow rate by regulating the flowback composition stream to a second pressure. The method also includes separating the flowback composition stream into a first gas stream and a condensed stream The method includes discharging the condensed stream to a degasser and degassing a carbon dioxide rich gas from the condensed stream. The method also includes mixing the carbon dioxide rich gas stream with the first gas stream to produce a second gas stream. The method includes controlling the third flow rate of the second gas stream by regulating the third pressure of the second gas stream to a fourth pressure that is different than the third pressure.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 3, 2015
    Inventors: Stephen Duane Sanborn, Imdad Imam, Andrew Philip Shapiro, John Brian McDermott, Harish Radhakrishna Acharya, Teresa Grocela Rocha, Jalal Hunain Zia, Johanna Wellington
  • Publication number: 20150260028
    Abstract: A method for recovering oil from an oil-bearing formation is presented. The method includes providing a reverse osmosis (RO) unit comprising at least one membrane; feeding a first feed stream having a first salinity content to a first side of the membrane; and feeding a second feed stream having a second salinity content to a second side of the membrane. The method further includes discharging a retentate stream from the first side of the membrane, and discharging a product stream having a controlled salinity content from the second side of the membrane. The method furthermore includes injecting at least a portion of the product stream into the oil-bearing formation, and recovering at least a portion of the oil from the oil-bearing formation. A system for recovering oil from an oil-bearing formation is also presented.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 17, 2015
    Applicant: General Electric Company
    Inventors: Hareesh Kumar Reddy Kommepalli, Andrew Philip Shapiro, Todd Alan Anderson, Hua Wang