Patents by Inventor Angela Hui

Angela Hui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8022468
    Abstract: A memory device may include a substrate, a first dielectric layer formed over the substrate and a charge storage element formed over the first dielectric layer. The memory device may also include a second dielectric layer formed over the charge storage element and a control gate formed over the second dielectric layer. The memory device may further include an interlayer dielectric formed over the control gate and the substrate, where the interlayer dielectric includes a material that is substantially opaque to ultraviolet radiation.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: September 20, 2011
    Assignees: Spansion LLC, Advanced Micro Devices, Inc.
    Inventors: Minh Van Ngo, Wenmei Li, Jeffrey A. Shields, Ning Cheng, Angela Hui, Cinti Xiaohua Chen
  • Patent number: 8012830
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line openings containing a bit line dielectric between the memory cells. The memory cell contains a charge storage layer and a first poly gate. The bit line opening extends into the semiconductor substrate. By containing the bit line dielectric in the bit line openings that extend into the semiconductor substrate, the memory device can improve the electrical isolation between memory cells, thereby preventing and/or mitigating TPD.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: September 6, 2011
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Kuo-Tung Chang, Hiro Kinoshita, Chih-Yuh Yang, Lei Xue, Chungho Lee, Minghao Shen, Angela Hui, Huaqiang Wu
  • Patent number: 7951675
    Abstract: Memory devices having improved BVdss characteristics and methods of making the memory devices are provided. The memory devices contain bitline dielectrics on bitlines of a semiconductor substrate; first spacers adjacent the side surfaces of the bitline dielectrics and on the upper surface of the semiconductor substrate; a trench in the semiconductor substrate between the first spacers; and second spacers adjacent the side surfaces of the trench. By containing the trench and the first and second spacers between the bitlines, the memory device can improve the electrical isolation between the bitlines, thereby preventing and/or mitigating bitline-to-bitline current leakage and increasing BVdss.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 31, 2011
    Assignee: Spansion LLC
    Inventors: Lei Xue, Aimin Xing, Chih-Yuh Yang, Angela Hui, Chungho Lee
  • Patent number: 7906807
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 15, 2011
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Calvin Gabriel, Angela Hui, Lei Xue, Harpreet Kaur Sachar, Phillip Lawrence Jones, Hiro Kinoshita, Kuo-Tung Chang, Huaqiang Wu
  • Publication number: 20100264480
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: SPANSION LLC
    Inventors: Ning Cheng, Calvin Gabriel, Angela Hui, Lei Xue, Harpreet Kaur Sachar, Phillip Lawrence Jones, Hiro Kinoshita, K.T Chang, Huaqiang Wu
  • Publication number: 20100230743
    Abstract: A method for fabricating a memory device with a self-aligned trap layer which is optimized for scaling is disclosed. In the present invention, a non-conformal film is deposited over the charge trapping layer to form a thick film on top of the core source/drain region and a pinch off and a void or a narrow channel at the top of the STI trench. An etch is performed on the non-conformal film to open pinch-off or widen the narrow channel in the non-conformal. The trapping layer is then completely or partially etched between the core cells. The non-conformal film is removed. And a top oxide is formed. The top oxide converts the remaining trap layer to oxide if the trapping layer is partially etched and thus isolate the trap layer.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 16, 2010
    Inventors: Shenqing Fang, Jihwan Choi, Calvin Gabriel, Fei Wang, Angela Hui, Alexander Nickel, Zubin Patel, Phillip Jones, Mark Chang, Minh-Van Ngo
  • Patent number: 7785965
    Abstract: Dual storage node memory devices and methods for fabricating dual storage node memory devices have been provided. In accordance with an exemplary embodiment, a method includes the steps of etching a plurality of trenches in a semiconductor substrate and forming a layered structure within the trenches. The layered structure includes a tunnel dielectric layer and a charge storage layer. Bit lines are formed within the semiconductor substrate and a layer of conductive material is deposited overlying the layered structure.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 31, 2010
    Assignee: Spansion LLC
    Inventors: Unsoon Kim, Kyunghoon Min, Ning Cheng, Hiroyuki Kinoshita, Sugino Rinji, Timothy Thurgate, Angela Hui, Jihwan Choi, Chi Chang
  • Patent number: 7776688
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 17, 2010
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Calvin Gabriel, Angela Hui, Lei Xue, Harpreet Kaur Sachar, Phillip Lawrence Jones, Hiro Kinoshita, Kuo-Tung Chang, Huaqiang Wu
  • Publication number: 20100155817
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: SPANSION LLC
    Inventors: Ning Cheng, Huaqiang Wu, Hiro Kinoshita, Jihwan Choi, Angela Hui
  • Patent number: 7732276
    Abstract: A method for fabricating a memory device with a self-aligned trap layer which is optimized for scaling is disclosed. In the present invention, a non-conformal film is deposited over the charge trapping layer to form a thick film on top of the core source/drain region and a pinch off and a void or a narrow channel at the top of the STI trench. An etch is performed on the non-conformal film to open pinch-off or widen the narrow channel in the non-conformal. The trapping layer is then completely or partially etched between the core cells. The non-conformal film is removed. And a top oxide is formed. The top oxide converts the remaining trap layer to oxide if the trapping layer is partially etched and thus isolate the trap layer.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: June 8, 2010
    Assignee: Spansion LLC
    Inventors: Shenqing Fang, Jihwan Choi, Calvin Gabriel, Fei Wang, Angela Hui, Alexander Nickel, Zubin Patel, Phillip Jones, Mark Chang, Minh-Van Ngo
  • Publication number: 20100133646
    Abstract: A method for fabricating a memory device with U-shaped trap layers over rounded active region corners is disclosed. In the present invention, an STI process is performed before the charge-trapping layer is formed. Immediately after the STI process, the sharp corners of the active regions are exposed, making them available for rounding. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, a bottom oxide layer, nitride layer, and sacrificial top oxide layer are formed. An organic bottom antireflective coating applied to the charge trapping layer is planarized. Now the organic bottom antireflective coating, sacrificial top oxide layer, and nitride layer are etched, without etching the sacrificial top oxide layer and nitride layer over the active regions. After the etching the charge trapping layer has a cross-sectional U-shape appearance.
    Type: Application
    Filed: February 3, 2010
    Publication date: June 3, 2010
    Inventors: Shenqing FANG, Angela HUI, Shao-Yu TING, Inkuk KANG, Gang XUE
  • Publication number: 20100099249
    Abstract: Methods of selectively forming metal silicides on a memory device are provided. The methods can include forming a mask layer over the memory device; forming a patterned resist over the mask layer; removing upper portions of the patterned resist; forming a patterned mask layer by removing portions of the mask layer that are not covered by the patterned resist; and forming metal silicides on the memory device by a chemical reaction of a metal layer formed on the memory device with portions of the memory device that are not covered by the patterned mask layer. By preventing silicidation of underlying silicon containing layers/components of the memory device that are covered by the patterned mask layer, the methods can selectively form the metal silicides on the desired portions of the memory device.
    Type: Application
    Filed: December 22, 2009
    Publication date: April 22, 2010
    Applicant: SPANSION LLC
    Inventors: Kyunghoon Min, Angela Hui, Hiroyuki Kinoshita, Ning Cheng, Mark Chang
  • Patent number: 7696038
    Abstract: Methods for fabricating flash memory devices are provided. In accordance with an exemplary embodiment of the invention, a method for fabricating a memory device comprises forming a first gate stack and a second gate stack overlying a substrate. A trench is etched into the substrate between the first gate stack and the second gate stack. A first impurity doped region is formed within the substrate underlying the trench.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: April 13, 2010
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Kuo-Tung Chang, Hiroyuki Kinoshita, Timothy Thurgate, Wei Zheng, Ashot Melik-Martirosian, Angela Hui, Chih-Yuh Yang
  • Patent number: 7691751
    Abstract: Methods of selectively forming metal silicides on a memory device are provided. The methods can include forming a mask layer over the memory device; forming a patterned resist over the mask layer; removing upper portions of the patterned resist; forming a patterned mask layer by removing portions of the mask layer that are not covered by the patterned resist; and forming metal silicides on the memory device by a chemical reaction of a metal layer formed on the memory device with portions of the memory device that are not covered by the patterned mask layer. By preventing silicidation of underlying silicon containing layers/components of the memory device that are covered by the patterned mask layer, the methods can selectively form the metal silicides on the desired portions of the memory device.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: April 6, 2010
    Assignee: Spansion LLC
    Inventors: Kyunghoon Min, Angela Hui, Hiroyuki Kinoshita, Ning Cheng, Mark Chang
  • Patent number: 7622389
    Abstract: A method for manufacturing a semiconductor device including selective conductive contacts includes the step of depositing a resist over first and second memory device components, each of the first and second components comprising junctions formed in the substrate and a gate formed on the substrate between the junctions. The resist is then removed from the second components to thereby form a resist opening above each of the second component control gates and junctions. The resist is then etched to thereby expose each of the first component control gates but not the substrate surrounding the first component control gates. Conductive contacts are then formed on the exposed first component control gates, and the second component control gates and junctions.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: November 24, 2009
    Assignee: Spansion LLC
    Inventors: Kyunghoon Min, Mark Chang, Ning Cheng, Brian Osborn, Kevin Song, Fei Wang, Angela Hui, Hiroyuki Kinoshita, Kuo-Tung Chang
  • Publication number: 20090152669
    Abstract: Memory devices having improved BVdss characteristics and methods of making the memory devices are provided. The memory devices contain bitline dielectrics on bitlines of a semiconductor substrate; first spacers adjacent the side surfaces of the bitline dielectrics and on the upper surface of the semiconductor substrate; a trench in the semiconductor substrate between the first spacers; and second spacers adjacent the side surfaces of the trench. By containing the trench and the first and second spacers between the bitlines, the memory device can improve the electrical isolation between the bitlines, thereby preventing and/or mitigating bitline-to-bitline current leakage and increasing BVdss.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 18, 2009
    Applicant: SPANSION LLC
    Inventors: Lei Xue, Aimin Xing, Chih-Yuh Yang, Angela Hui, Chungho Lee
  • Publication number: 20090111265
    Abstract: Methods of selectively forming metal silicides on a memory device are provided. The methods can include forming a mask layer over the memory device; forming a patterned resist over the mask layer; removing upper portions of the patterned resist; forming a patterned mask layer by removing portions of the mask layer that are not covered by the patterned resist; and forming metal silicides on the memory device by a chemical reaction of a metal layer formed on the memory device with portions of the memory device that are not covered by the patterned mask layer. By preventing silicidation of underlying silicon containing layers/components of the memory device that are covered by the patterned mask layer, the methods can selectively form the metal silicides on the desired portions of the memory device.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Applicant: Spansion LLC
    Inventors: Kyunghoon Min, Angela Hui, Hiroyuki Kinoshita, Ning Cheng, Mark Chang
  • Publication number: 20090042378
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
    Type: Application
    Filed: August 8, 2007
    Publication date: February 12, 2009
    Applicant: SPANSION LLC
    Inventors: Ning Cheng, Calvin Gabriel, Angela Hui, Lei Xue, Harpreet Kaur Sachar, Phillip Lawrence Jones, Hiro Kinoshita, K.T. Chang, Huaqiang Wu
  • Publication number: 20090039405
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line openings containing a bit line dielectric between the memory cells. The memory cell contains a charge storage layer and a first poly gate. The bit line opening extends into the semiconductor substrate. By containing the bit line dielectric in the bit line openings that extend into the semiconductor substrate, the memory device can improve the electrical isolation between memory cells, thereby preventing and/or mitigating TPD.
    Type: Application
    Filed: August 8, 2007
    Publication date: February 12, 2009
    Applicant: SPANSION LLC
    Inventors: Ning Cheng, K.T. Chang, Hiro Kinoshita, Chih-Yuh Yang, Lei Xue, Chungho Lee, Minghao Shen, Angela Hui, Huaqiang Wu
  • Publication number: 20080265301
    Abstract: A method for fabricating a memory device with a self-aligned trap layer which is optimized for scaling is disclosed. In the present invention, a non-conformal film is deposited over the charge trapping layer to form a thick film on top of the core source/drain region and a pinch off and a void or a narrow channel at the top of the STI trench. An etch is performed on the non-conformal film to open pinch-off or widen the narrow channel in the non-conformal. The trapping layer is then completely or partially etched between the core cells. The non-conformal film is removed. And a top oxide is formed. The top oxide converts the remaining trap layer to oxide if the trapping layer is partially etched and thus isolate the trap layer.
    Type: Application
    Filed: April 26, 2007
    Publication date: October 30, 2008
    Inventors: Shenqing Fang, Jihwan Choi, Calvin Gabriel, Fei Wang, Angela Hui, Alexander Nickel, Zubin Patel, Phillips Jones, Mark Chang, Minh-Van Ngo