Patents by Inventor Anh Duong

Anh Duong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9123785
    Abstract: Copper can be etched with selectivity to Ta/TaN barrier liner and SiC hardmask layers, for example, to reduce the potential copper contamination. The copper film can be recessed more than the liner to further enhance the protection. Wet etch solutions including a mixture of HF and HCl can be used for selective etching copper with respect to the liner material, for example, the copper film can be recessed between 2 and 3 nm, and the barrier liner film can be recessed between 1.5 and 2 nm.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: September 1, 2015
    Assignees: Intermolecular, Inc., GLOBALFOUNDRIES, INC.
    Inventors: Anh Duong, Errol Todd Ryan
  • Publication number: 20150228595
    Abstract: Methods for etching copper in the fabrication of integrated circuits are disclosed. In one exemplary embodiment, a method for fabricating an integrated circuit includes providing an integrated circuit structure including a copper bump structure and a copper seed layer underlying and adjacent to the copper bump structure and etching the seed layer selective to the copper bump structure using a wet etching chemistry consisting of H3PO4 in a volume percentage of about 0.07 to about 0.36, H2O2 in a volume percentage of about 0.1 to about 0.7, and a remainder of H2O, and optionally NH4OH.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 13, 2015
    Applicants: Intermolecular Inc., GLOBALFOUNDRIES Inc.
    Inventors: Reiner Willeke, Tanya Atanasova, Anh Duong, Greg Nowling
  • Publication number: 20150130065
    Abstract: Copper can be etched with selectivity to Ta/TaN barrier liner and SiC hardmask layers, for example, to reduce the potential copper contamination. The copper film can be recessed more than the liner to further enhance the protection. Wet etch solutions including a mixture of HF and H2SO4 can be used for selective etching copper with respect to the liner material, for example, the copper film can be recessed between 2 and 3 nm, and the barrier liner film can be recessed between 1.5 and 2 nm.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicants: Intermolecular Inc.
    Inventors: Anh Duong, Errol Todd Ryan
  • Patent number: 9012322
    Abstract: Wet-etch solutions for conductive metals (e.g., copper) and metal nitrides (e.g., tantalum nitride) can be tuned to differentially etch the conductive metals and metal nitrides while having very little effect on nearby oxides (e.g., silicon dioxide hard mask materials), and etching refractory metals (e.g. tantalum) at an intermediate rate. The solutions are aqueous base solutions (e.g., ammonia-peroxide mixture or TMAH-peroxide mixture) with just enough hydrofluoric acid (HF) added to make the solution's pH about 8-10. Applications include metallization of sub-micron logic structures.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: April 21, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Anh Duong, Errol Todd Ryan
  • Publication number: 20150105308
    Abstract: A method for cleaning residues from a semiconductor substrate during a nickel platinum silicidation process is disclosed, including a multi-step residue cleaning, including exposing the substrate to an aqua regia solution, followed by an exposure to a solution having hydrochloric acid and hydrogen peroxide. The SC2 solution can further react with remaining platinum residues, rendering it more soluble in an aqueous solution and thereby dissolving it from the surface of the substrate.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Anh Duong, Clemens Fitz, Olov Karlsson
  • Publication number: 20150068725
    Abstract: A wellhead assembly includes a wellhead housing with a bore and an annular lock groove on an inner diameter surface of the bore. A wellbore member is concentrically located within the bore of the wellhead housing, defining an annulus between the wellbore member and the wellhead housing. An annular lock ring is positioned in the annulus. The annular lock ring has an outer diameter profile for engaging the lock groove and is radially expandable from an unset position to a set position. An energizing ring is positioned in the annulus to push the lock ring outward to the set position as the energizing ring moves downward. A retainer selectively engages the energizing ring and limits axial upward movement of the energizing ring relative to the wellbore member, retains the annular lock in the set position, and prevents axial upward movement of the wellbore member relative to the wellhead housing.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Applicant: VETCO GRAY INC.
    Inventors: Khanh Anh Duong, Rick C. Hunter
  • Patent number: 8946015
    Abstract: A method for cleaning residues from a semiconductor substrate during a nickel platinum silicidation process is disclosed, including a multi-step residue cleaning, including exposing the substrate to an aqua regia solution, followed by an exposure to a solution having hydrochloric acid and hydrogen peroxide. The SC2 solution can further react with remaining platinum residues, rendering it more soluble in an aqueous solution and thereby dissolving it from the surface of the substrate.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: February 3, 2015
    Assignees: Intermolecular, Inc., GLOBALFOUNDRIES, Inc.
    Inventors: Anh Duong, Clemens Fitz, Olov Karlsson
  • Publication number: 20150017456
    Abstract: When an etchant for metal (e.g., HF) reaches an underlying silicon oxide layer, it may form silanol bonds or other hydrogen bonds that resist rinsing, so that some etchant remains to be trapped under the next deposited layer. Trapped etchant can create voids that eventually degrade the performance of the oxide layer. Exposing the surface to a liquid solution or gaseous precursor containing silane seals the defects without causing an overall thickness change. The silane reacts at sites with silanol (or other hydrogen) bonds, breaking the bonds and replacing the hydrogen with silicon, but does not react in the absence of a hydrogen bond.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Inventors: Anh Duong, Clemens Fitz
  • Patent number: 8926758
    Abstract: A composition for removing photoresist and bottom anti-reflective coating from a semiconductor substrate is disclosed. The composition may comprise a nontoxic solvent, the nontoxic solvent having a flash point above 80 degrees Celsius and being capable of dissolving acrylic polymer and phenolic polymer. The composition may further comprise Tetramethylammonium Hydroxide (TMAH) mixed with the nontoxic solvent.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 6, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Indranil De, Anh Duong
  • Publication number: 20150001555
    Abstract: Methods of modifying a patterned semiconductor substrate are presented including: providing a patterned semiconductor substrate surface including a dielectric region and a conductive region; and applying an amphiphilic surface modifier to the dielectric region to modify the dielectric region. In some embodiments, modifying the dielectric region includes modifying a wetting angle of the dielectric region. In some embodiments, modifying the wetting angle includes making a surface of the dielectric region hydrophilic. In some embodiments, methods further include applying an aqueous solution to the patterned semiconductor substrate surface. In some embodiments, the conductive region is selectively enhanced by the aqueous solution. In some embodiments, methods further include providing the dielectric region formed of a low-k dielectric material. In some embodiments, applying the amphiphilic surface modifier modifies an interaction of the low-k dielectric region with a subsequent process.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 1, 2015
    Inventors: Anh Duong, Tony Chiang, Zachary M. Fresco, Nitin Kumar, Chi-I Lang, Jinhong Tong, Anna Tsizelmon
  • Publication number: 20140363944
    Abstract: A method for cleaning residues from a semiconductor substrate during a nickel platinum silicidation process is disclosed, including a multi-step residue cleaning, including exposing the substrate to an aqua regia solution, followed by an exposure to a solution having hydrochloric acid and hydrogen peroxide. The SC2 solution can further react with remaining platinum residues, rendering it more soluble in an aqueous solution and thereby dissolving it from the surface of the substrate.
    Type: Application
    Filed: July 17, 2014
    Publication date: December 11, 2014
    Inventors: Anh Duong, Clemens Fitz, Olov Karlsson
  • Patent number: 8894774
    Abstract: A composition of matter and method to remove excess material during the manufacturing of semiconductor devices includes providing a substrate; applying a metal chelator mixture to the substrate, where the metal chelator mixture comprising a metal chelator and a solvent, where the metal chelator binds to the platinum residue, to render the platinum residue soluble; and rinsing the metal chelator mixture from the substrate to remove the platinum residue from the silicide.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: November 25, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Anh Duong
  • Patent number: 8870186
    Abstract: A seal assembly for use with a casing hanger that includes a pair of split rings held together by a threaded fastener. Torqueing the fastener axially compresses one of the rings so that it expands radially inward into sealing engagement with a wall of wellbore casing, and radially outward against an inner wall of a wellhead housing. Support grommets are provided where the fastener enters and exits the compressible ring. Protrusions on a side of the support grommets project into the compressible ring and create a sealing interface between each support grommet and compressible ring. O-rings line inner circumferences of the support grommets to seal between the support grommets and fasteners. A threaded end on a lower end of the fastener has a diameter less than an inner diameter of the O-rings to prevent damaging the O-rings during assembly.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: October 28, 2014
    Assignee: Vetco Gray Inc.
    Inventors: Chau Hoang, Khanh Anh Duong, William Ryan Moore, Karl A. Parfrey, Clayton Griffin
  • Patent number: 8871860
    Abstract: Methods of modifying a patterned semiconductor substrate are presented including: providing a patterned semiconductor substrate surface including a dielectric region and a conductive region; and applying an amphiphilic surface modifier to the dielectric region to modify the dielectric region. In some embodiments, modifying the dielectric region includes modifying a wetting angle of the dielectric region. In some embodiments, modifying the wetting angle includes making a surface of the dielectric region hydrophilic. In some embodiments, methods further include applying an aqueous solution to the patterned semiconductor substrate surface. In some embodiments, the conductive region is selectively enhanced by the aqueous solution. In some embodiments, methods further include providing the dielectric region formed of a low-k dielectric material. In some embodiments, applying the amphiphilic surface modifier modifies an interaction of the low-k dielectric region with a subsequent process.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: October 28, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Anh Duong, Tony Chiang, Zachary M. Fresco, Nitin Kumar, Chi-I Lang, Jinhong Tong, Anna Tsizelmon
  • Patent number: 8859431
    Abstract: The invention discloses a method for cleaning residues from a semiconductor substrate during a nickel platinum silicidation process. Post silicidation residues of nickel and platinum may not be removed adequately just by an aqua regia solution (comprising a mixture of nitric acid and hydrochloric acid). Therefore, embodiments of the invention provide a multi-step residue cleaning, comprising exposing the substrate to an aqua regia solution, followed by an exposure to a chlorine gas or a solution comprising dissolved chlorine gas, which may further react with remaining platinum residues, rendering it more soluble in aqueous solution and thereby dissolving it from the surface of the substrate.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: October 14, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Anh Duong, John Foster, Olov Karlsson, James Mavrinac, Usha Raghuram
  • Publication number: 20140302671
    Abstract: Wet-etch solutions for conductive metals (e.g., copper) and metal nitrides (e.g., tantalum nitride) can be tuned to differentially etch the conductive metals and metal nitrides while having very little effect on nearby oxides (e.g., silicon dioxide hard mask materials), and etching refractory metals (e.g. tantalum) at an intermediate rate. The solutions are aqueous base solutions (e.g., ammonia-peroxide mixture or TMAH-peroxide mixture) with just enough hydrofluoric acid (HF) added to make the solution's pH about 8-10. Applications include metallization of sub-micron logic structures.
    Type: Application
    Filed: April 5, 2013
    Publication date: October 9, 2014
    Applicant: Intermolecular Inc.
    Inventors: Anh Duong, Errol Todd Ryan
  • Patent number: 8853081
    Abstract: Provided are methods for processing semiconductor substrates to remove high-dose ion implanted (HDI) photoresist structures without damaging other structures made of titanium nitride, tantalum nitride, hafnium oxide, and/or hafnium silicon oxide. The removal is performed using a mixture of an organic solvent, an oxidant, a metal-based catalyst, and one of a base or an acid. Some examples of suitable organic solvents include dimethyl sulfoxide, n-ethyl pyrrolidone, monomethyl ether, and ethyl lactate. Transition metals in their zero-oxidation state, such as metallic iron or metallic chromium, may be used as catalysts in this mixture. In some embodiments, a mixture includes ethyl lactate, of tetra-methyl ammonium hydroxide, and less than 1% by weight of the metal-based catalyst. The etching rate of the HDI photoresist may be at least about 100 Angstroms per minute, while other structures may remain substantially intact.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: October 7, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Anh Duong, Olov Karlsson, Sven Metzger
  • Patent number: 8851185
    Abstract: A wellhead seal assembly has a primary seal and a secondary seal, each seal forming a metal-to-metal seal between inner and outer wellhead members. A primary metal seal ring has inner and outer walls separated by a slot. A secondary metal seal is located below the seal ring and has a bottom portion that contacts an upward facing shoulder of a hanger. A primary energizing exerts downward force on the primary seal, causing a secondary energizing ring, located below the primary energizing ring, to energize the secondary seal. Once the secondary seal is energized, thus stopping downward movement of the (primary seal and secondary energizing ring, the primary energizing ring energizes the primary seal.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: October 7, 2014
    Assignee: Vetco Gray Inc.
    Inventor: Khanh Anh Duong
  • Publication number: 20140282892
    Abstract: A system for integrating access to separate and physically partitioned networks from a single client device is described. The system is interposed between the client device and the networks to allow communication between the client device and the networks, such that data remains partitioned between networks. The system includes a scrambler configured to mix portions of data of variable bit lengths. Typically, the scrambler receives the portions of data from each of the plurality of networks, intermixes the portions of data from the networks, then selects different paths for transporting the intermixed portions of data to the client device. Each of the different paths for transporting the intermixed portions of data are physically and/or logically partitioned from each other. Only when the data arrives on the client device is it able to be reassembled, and then only in particular partitioned locations on the client device corresponding to the particular network from which the data originated.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Unisys Corporation
    Inventors: Robert A. Johnson, Thomas Douris, Anh Duong
  • Publication number: 20140248770
    Abstract: A method is provided for removing residual Ni/Pt and/or Pt from a semiconductor substrate in a post salicidation cleaning process using microwave heating of a stripping solution. Embodiments include depositing a Ni/Pt layer on a semiconductor substrate; annealing the deposited Ni/Pt layer, forming a nickel/platinum silicide and residual Ni/Pt and/or Pt; removing the residual Ni/Pt and/or Pt from the semiconductor substrate by: microwave heating a strong acid solution in a non-reactive container; exposing the residual Ni/Pt and/or Pt to the microwave heated strong acid solution; and rinsing the semiconductor substrate with water H2O.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Clemens FITZ, Sven METZGER, Paul R. BESSER, Vincent SIH, Anh DUONG