Patents by Inventor Anil U. Mane

Anil U. Mane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240110285
    Abstract: A calorimetry sensor having a porous substrate and a temperature sensitive resistive coating. The calorimetry sensor has a known temperature coefficient of resistance. A process utilizes the known temperature coefficient of resistance and monitors changes in resistance of the calorimetry sensor to determine changes in temperature (heat) within an environment, such as during reactions within an ALD reactor.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam
  • Patent number: 11946139
    Abstract: A lithium boron coating and a method of producing the same. Atomic layer deposition deposits lithium and boron to form a lithium borate layer. The lithium borate maybe deposited as a solid electrolyte.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: April 2, 2024
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Devika Choudhury, Jeffrey W. Elam
  • Patent number: 11901169
    Abstract: A secondary electron emissive layer resistant to infiltration and fouling. A barrier layer is formed by atomic layer deposition. The barrier layer may be an emissive layer and/or an interlayer. The barrier layer may form an interlayer that is a part of an electron amplifier positioned between an emissive layer and a resistive layer. The barrier layer is resistive to fluorine migration from either the emissive layer or the resistive layer.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: February 13, 2024
    Assignees: UCHICAGO ARGONNE, LLC, INCOM, INC.
    Inventors: Jeffrey W. Elam, Anil U. Mane, Mark Popecki, Michael Minot
  • Patent number: 11862783
    Abstract: The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 ?) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: January 2, 2024
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Joong Sun Park, Jason R. Croy
  • Patent number: 11851757
    Abstract: Coated nanofibers and methods for forming the same. A magnetic nanofiber is formed and a barrier coating is deposited on the magnetic nanofiber by atomic layer deposition (“ALD”) process. The coated nanofiber may include a reduced magnetic nanostructure and a barrier coating comprising a first oxide coating on the nanofiber, the coating being non-reactive with the magnetic polymer nanofiber, the barrier coating have a thickness of 2 nm to 12 nm.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: December 26, 2023
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Yuepeng Zhang, Devika Choudhury, Jeffrey W. Elam, Kaizhong Gao, John N. Hryn
  • Patent number: 11846021
    Abstract: The sequential infiltration synthesis (SIS) and Atomic Layer Deposition (ALD) of metal and/or metal oxides on personal medical equipment (PPE). The deposited metal and/or metal oxides imbues antimicrobial properties to the PPE.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 19, 2023
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Seth B. Darling, Nestor J. Zaluzec, Alex B. Martinson
  • Patent number: 11773488
    Abstract: ALD and p-CVD methods to generate MgB2 and MgB2-containing films in the growth temperature range of 250-300° C. The thermal ALD and p-CVD methods shown herein ensure that the high-temperature-induced roughening, which causes high surface resistances in MgB2 coatings grown by the mentioned conventional techniques, is avoided. The MgB2 and MgB2-containing films exhibit superconductive properties at above 20° K.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: October 3, 2023
    Assignee: UChicago Argonne, LLC
    Inventors: David Joseph Mandia, Angel Yanguas-Gil, Devika Choudhury, Aliraeza Nassiri, Anil U. Mane, Jeffrey W. Elam
  • Publication number: 20230260736
    Abstract: A secondary electron emissive layer resistant to infiltration and fouling. A barrier layer is formed by atomic layer deposition. The barrier layer may be an emissive layer and/or an interlayer. The barrier layer may form an interlayer that is a part of an electron amplifier positioned between an emissive layer and a resistive layer. The barrier layer is resistive to fluorine migration from either the emissive layer or the resistive layer.
    Type: Application
    Filed: February 14, 2022
    Publication date: August 17, 2023
    Applicants: UCHICAGO ARGONNE, LLC, INCOM, INC.
    Inventors: Jeffrey W. Elam, Anil U. Mane, Mark Popecki, Michael Minot
  • Publication number: 20230126417
    Abstract: A method of making thin films of sodium fluorides and their derivatives by atomic layer deposition (“ALD”). A sodium precursor is exposed to a substrate in an ALD reactor. The sodium precursor is purged, leaving the substrate with a sodium intermediate bound thereon. A fluorine precursor is exposed to the bound sodium intermediate in the ALD reactor. The fluorine precursor is purged and a sodium fluoride film is formed on the substrate.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 27, 2023
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Donghyeon Kang, Sara Kuraitis, Elton Graugnard
  • Publication number: 20220298626
    Abstract: A process for forming a lithium-metal-oxygen film on a lithium SSE. A metal-ligand complex is exposed to the SSE such as for 30-600 seconds in a chemical vapor transfer reactor at a temperature of 200-350° C.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 22, 2022
    Inventors: Donghyeon KANG, Jeffrey W. ELAM, Joseph A. LIBERA, Yujia LIANG, HackSung KIM, Anil U. MANE
  • Patent number: 11447862
    Abstract: Transition metal dichalcogenides (TMDs) are deposited as thin layers on a substrate. The TMDs may be grown on oxide substrates and may have a tunable TMD-oxide interface.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: September 20, 2022
    Assignees: UChicago Argonne, LLC, Boise State University
    Inventors: Anil U. Mane, Jeffrey W. Elam, Steven Letourneau, Elton Graugnard
  • Publication number: 20220293900
    Abstract: A process for forming a fluoride-based coating on an electrode material that is at least partially covered with a surface carbonate, includes disposing the electrode material in a reactor. The electrode material is exposed to a vapor of a fluoride-based precursor material such that the fluoride-based precursor material dopes the surface carbonate so as to form a layer of a fluoride coating on the electrode material.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 15, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Pragathi Darapaneni
  • Patent number: 11435114
    Abstract: Selective receiver coatings provide high performance for concentrated solar power applications. The solar selective coating provides high solar absorptivity (90% or greater) with low IR emissivity (0.1 or less) while maintaining stability at temperatures greater than 700° C. The coating comprises a composite of a mesoporous photonic matrix with a conformal optical coating. One example composite coating includes a mesoporous photonic coating comprising a plurality of particles having sizes between 100 nm and 2000 nm, and a conformal optical coating formed by Atomic Layer Deposition (ALD) that infiltrates the mesoporous structure of the photonic coating and comprises metal nanoparticles and an amorphous dielectric matrix.
    Type: Grant
    Filed: February 6, 2016
    Date of Patent: September 6, 2022
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Anil U. Mane, Angel Yanguas-Gil, Joseph A. Libera
  • Patent number: 11414756
    Abstract: Time projection chambers are useful for high energy particle physics, nuclear physics, and astronomy. To enhance the particle detection efficiency and performance of the projection chambers functional bilayer thin film coatings based on the atomic layer deposition method are utilized. Coating material selection is based on Auger neutralization process ion induced electron emission from metallic surfaces (e.g., Mo or W) combined with a high secondary electron emission coefficient. Application of high secondary electron emission materials (e.g., MgO and CaF2) enhances the multiplication of these emitted electrons from ion induction processes. Therefore, using suitable bilayer coatings the overall TPC signal detection efficiency can be increased.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: August 16, 2022
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Anil U. Mane, Stephen Magill
  • Patent number: 11414749
    Abstract: A process for forming a lithium-metal-carbon film on a lithium metal structure. A metal-ligand complex is exposed to the metal ligand, such as for 5-30 seconds in a chemical vapor transfer reactor at a temperature of 100-180° C.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 16, 2022
    Assignee: UChicago Argonne, LLC
    Inventors: Donghyeon Kang, Jeffrey W. Elam, Anil U. Mane
  • Patent number: 11393681
    Abstract: Transition metal dichalcogenides (TMDs) are deposited by atomic layer deposition as thin layers on a substrate. The TMDs may be grown on oxide substrates and may have a tunable TMD-oxide interface. The TMD may be etched using an atomic layer etching technique.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: July 19, 2022
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam
  • Patent number: 11326255
    Abstract: A system and method for improved atomic layer deposition. The system includes a top showerhead plate, a substrate and a bottom showerhead plate. The substrate includes a porous microchannel plate and a substrate holder is positioned in the system to insure flow-through of the gas precursor.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: May 10, 2022
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Joseph Libera, Jeffrey W. Elam
  • Publication number: 20220098730
    Abstract: The sequential infiltration synthesis (SIS) and Atomic Layer Deposition (ALD) of metal and/or metal oxides on personal medical equipment (PPE). The deposited metal and/or metal oxides imbues antimicrobial properties to the PPE.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Seth B. Darling, Nestor J. Zaluzec, Alex B. Martinson
  • Publication number: 20220098736
    Abstract: A lithium boron coating and a method of producing the same. Atomic layer deposition deposits lithium and boron to form a lithium borate layer. The lithium borate maybe deposited as a solid electrolyte.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Devika Choudhury, Jeffrey W. Elam
  • Publication number: 20220098734
    Abstract: A secondary electron emissive coating. The coating is formed by atomic layer deposition of CaF2 on a substrate by ALD half cycle exposure of an alkaline metal amidinate and ALD half cycle exposure of a fluorinated compound, where the deposition occurs at a reaction temperature greater than a highest sublimation temperature of the first metal precursor and the second metal precursor and less than 50° C. above the highest sublimation temperature.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Jeffrey W. Elam, Anil U. Mane