Patents by Inventor Anil U. Mane

Anil U. Mane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170166456
    Abstract: A method of fabricating an oleophilic foam includes providing a foam comprising a base material. The base material is coated with an inorganic material using at least one of an atomic layer deposition (ALD), a molecular layer deposition (MLD) or sequential infiltration synthesis (SIS) process. The SIS process includes at least one cycle of exposing the foam to a first metal precursor for a first predetermined time and a first partial pressure. The first metal precursor infiltrates at least a portion of the base material and binds with the base material. The foam is exposed to a second co-reactant precursor for a second predetermined time and a second partial pressure. The second co-reactant precursor reacts with the first metal precursor, thereby forming the inorganic material on the base material. The inorganic material infiltrating at least the portion of the base material. The inorganic material is functionalized with an oleophilic material.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 15, 2017
    Applicant: UChicago Argonne, LLC
    Inventors: Seth B. Darling, Jeffrey W. Elam, Anil U. Mane
  • Publication number: 20160379828
    Abstract: A conformal thermal ALD film having a combination of elements containing a dopant, such as boron (or phosphorus), and an oxide (or nitride), in intimate contact with a semiconductor substrate said combination having stable ambient and thermal annealing properties providing a shallow (less than ˜100 A) diffused (or recoil implanted) dopant, such as boron (or phosphorus) profile, into the underlying semiconductor substrate.
    Type: Application
    Filed: June 23, 2016
    Publication date: December 29, 2016
    Inventors: Anil U. Mane, Thomas E. Seidel, Michael I. Current, Alexander Goldberg, Jeffrey W. Elam
  • Publication number: 20160340602
    Abstract: A lubricant composition includes an oil including a plurality of long-chain hydrocarbon molecules. A quantity of a catalytically active metal-organic additive is mixed with the oil. The metal-organic additive is formulated to fragment the long-chain hydrocarbon molecules of the oil into at least one of dimers and trimers under the influence of at least one of a mechanical loading and a thermal loading. In some embodiments, the metal-organic additive includes a compound of formula II: where: X is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg or Cn, and R1, R2, R3 and R4 are alkyl or alkyl halide.
    Type: Application
    Filed: May 22, 2015
    Publication date: November 24, 2016
    Applicant: UChicago Argonne, LLC
    Inventors: Ali Erdemir, Anil U. Mane, Jeffrey W. Elam, Giovanni Ramirez, Osman Eryilmaz
  • Publication number: 20160314947
    Abstract: Scalable electron amplifier devices and methods of fabricating the devices an atomic layer deposition (“ALD”) fabrication process are described. The ALD fabrication process allows for large area (e.g., eight inches by eight inches) electron amplifier devices to be produced at reduced costs compared to current fabrication processes. The ALD fabrication process allows for nanostructure functional coatings, to impart a desired electrical conductivity and electron emissivity onto low cost borosilicate glass micro-capillary arrays to form the electron amplifier devices.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 27, 2016
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam
  • Publication number: 20160260962
    Abstract: The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 ?) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials.
    Type: Application
    Filed: April 22, 2015
    Publication date: September 8, 2016
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Joong Sun Park, Jason R. Croy
  • Patent number: 9401231
    Abstract: A method for forming a transparent conducting oxide product layer. The method includes use of precursors, such as tetrakis-(dimethylamino) tin and trimethyl indium, and selected use of dopants, such as SnO and ZnO for obtaining desired optical, electrical and structural properties for a highly conformal layer coating on a substrate. Ozone was also input as a reactive gas which enabled rapid production of the desired product layer.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 26, 2016
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Jeffrey W. Elam, Anil U. Mane
  • Patent number: 9105379
    Abstract: A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al2O3, Mo:Al2O3 or M:Al2O3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 11, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Anil U. Mane
  • Patent number: 8969823
    Abstract: A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: March 3, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Anil U. Mane, Qing Peng
  • Patent number: 8921799
    Abstract: A method and article of manufacture of intermixed tunable resistance composite materials. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: December 30, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Anil U. Mane
  • Publication number: 20140220244
    Abstract: A system and method for improved atomic layer deposition. The system includes a top showerhead plate, a substrate and a bottom showerhead plate. The substrate includes a porous microchannel plate and a substrate holder is positioned in the system to insure flow-through of the gas precursor.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 7, 2014
    Applicant: UChicago Argonne LLC
    Inventors: Anil U. Mane, Joseph Libera, Jeffrey W. Elam
  • Publication number: 20140183369
    Abstract: Large-area, flat-panel photo-detectors with sub-nanosecond time resolution based on microchannel plates are provided. The large-area, flat-panel photo-detectors enable the economic construction of sampling calorimeters with, for example, enhanced capability to measure local energy deposition, depth-of-interaction, time-of-flight, and/or directionality of showers. In certain embodiments, sub-nanosecond timing resolution supplies correlated position and time measurements over large areas. The use of thin flat-panel viewing radiators on both sides of a radiation-creating medium allows simultaneous measurement of Cherenkov and scintillation radiation in each layer of the calorimeter. The detectors may be used in a variety of applications including, for example, medical imaging, security, and particle and nuclear physics.
    Type: Application
    Filed: November 26, 2013
    Publication date: July 3, 2014
    Applicant: The University of Chicago
    Inventors: Henry Frisch, Jean-Francois Genat, Herve Grabas, Chien-Min Kao, Chin-Tu Chen, Heejong Kim, Fukun Tang, Jeffrey W. Elam, Anil U. Mane
  • Publication number: 20130335190
    Abstract: A method and article of manufacture of intermixed tunable resistance composite materials. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Inventors: Jeffrey W. ELAM, Anil U. Mane
  • Patent number: 8604440
    Abstract: Large-area, flat-panel photo-detectors with sub-nanosecond time resolution based on microchannel plates are provided. The large-area, flat-panel photo-detectors enable the economic construction of sampling calorimeters with, for example, enhanced capability to measure local energy deposition, depth-of-interaction, time-of-flight, and/or directionality of showers. In certain embodiments, sub-nanosecond timing resolution supplies correlated position and time measurements over large areas. The use of thin flat-panel viewing radiators on both sides of a radiation-creating medium allows simultaneous measurement of Cherenkov and scintillation radiation in each layer of the calorimeter. The detectors may be used in a variety of applications including, for example, medical imaging, security, and particle and nuclear physics.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: December 10, 2013
    Assignee: The University of Chicago
    Inventors: Henry Frisch, Jean-Francois Genat, Hervé Grabas, Chien-Min Kao, Chin-Tu Chen, Heejong Kim, Fukun Tang, Jeffrey W. Elam, Anil U. Mane
  • Publication number: 20130280546
    Abstract: A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al2O3, Mo:Al2O3 or M:Al2O3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 24, 2013
    Inventors: Jeffrey W. Elam, Anil U. Mane
  • Publication number: 20130082219
    Abstract: A method for forming a transparent conducting oxide product layer. The method includes use of precursors, such as tetrakis-(dimethylamino) tin and trimethyl indium, and selected use of dopants, such as SnO and ZnO for obtaining desired optical, electrical and structural properties for a highly conformal layer coating on a substrate. Ozone was also input as a reactive gas which enabled rapid production of the desired product layer.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Jeffrey W. Elam, Anil U. Mane
  • Publication number: 20120187305
    Abstract: A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 26, 2012
    Inventors: Jeffrey W. Elam, Anil U. Mane, Qing Peng