Patents by Inventor Animesh Datta

Animesh Datta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140368247
    Abstract: Techniques for fixing hold violations using metal-programmable cells are described herein. In one embodiment, a system comprises a first flip-flop, a second flip-flop, and a data path between the first and second flip-flops. The system further comprises a metal-programmable cell connected to the data path, wherein the metal-programmable cell is programmed to implement at least one capacitor to add a capacitive load to the data path. The capacitive load adds delay to the data path that prevents a hold violation at one of the first and second flip-flops.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Animesh Datta, Qi Ye, Chih-Lung Kao
  • Publication number: 20140359385
    Abstract: Techniques for reducing scan overhead in a scannable flop tray are described herein. In one embodiment, a scan circuit for a flop tray comprises a tri-state circuit configured to invert an input data signal and output the inverted data signal to an input of a flip-flop of the flop tray in a normal mode, and to block the data signal from the input of the flip-flop in a scan mode. The scan circuit also comprises a pass gate configured to pass a scan signal to the input of the flip-flop in the scan mode, and to block the scan signal from the input of the flip-flop in the normal mode.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Jay Madhukar Shah, Chethan Swamynathan, Animesh Datta
  • Publication number: 20140330994
    Abstract: A synchronous data-link throughput enhancement technique based on data signal duty-cycle and phase modulation demodulation is disclosed. A method includes receiving multiple bits to be transmitted, encoding the multiple bits to generate a multi-bit signal that represents the multiple bits, and transmitting, via a synchronous interface, the multi-bit signal during a time period that corresponds to one-half of a cycle of a synchronization signal.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 6, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Lalan J. Mishra, Dexter T. Chun, Animesh Datta
  • Publication number: 20140306735
    Abstract: A circuit including a logic gate responsive to a clock signal and to a control signal. The circuit also includes a master stage of a flip-flop. The circuit further includes a slave stage of the flip-flop responsive to the master stage. The circuit further includes an inverter responsive to the logic gate and configured to output a delayed version of the clock signal. An output of the logic gate and the delayed version of the clock signal are provided to the master stage and to the slave stage of the flip-flop. The master stage is responsive to the control signal to control the slave stage.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Seid Hadi Rasouli, Animesh Datta, Jay Madhukar Shah, Martin Saint-Laurent, Peeyush Kumar Parkar, Sachin Bapat, Ramaprasath Vilangudipitchai, Mohamed Hassan Abu-Rahma, Prayag Bhanubhai Patel
  • Patent number: 8836040
    Abstract: A semiconductor standard cell includes an N-type diffusion area and a P-type diffusion area, both extending across the cell and also outside of the cell. The cell also includes a conductive gate above each diffusion area to create a semiconductive device. A pair of dummy gates are also above the N-type diffusion area and the P-type diffusion area creating a pair of dummy devices. The pair of dummy gates are disposed at opposite edges of the cell. The cell further includes a first conductive line configured to couple the dummy devices to power for disabling the dummy devices.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: September 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Pratyush Kamal, Esin Terzioglu, Foua Vang, Prayag Bhanubhai Patel, Giridhar Nallapati, Animesh Datta
  • Publication number: 20140225655
    Abstract: Techniques for clock gating a synchronizer are described herein. In one embodiment a circuit for clock gating a synchronizer comprises a clock-gating circuit configured to receive an input clock signal, and to selectively provide either the input clock signal or a fixed clock signal to the synchronizer. The circuit also comprises a comparator configured to compare a data value of a data signal input to the synchronizer, a first value of the synchronizer, and a second value of the synchronizer with one another, to instruct the clock-gating circuit to provide the input clock signal to the synchronizer if the data value, the first value, and the second value are not all the same, and to instruct the clock-gating circuit to provide the fixed clock signal to the synchronizer if the data value, the first value, and the second value are all the same.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Seid Hadi Rasouli, Animesh Datta, Ohsang Kwon
  • Publication number: 20140211893
    Abstract: Techniques for resolving a metastable state in a synchronizer are described herein. In one embodiment, a circuit for resolving a metastable state in a synchronizer comprises a signal delay circuit coupled to a node of the synchronizer, wherein the signal delay circuit is configured to delay a data signal at the node to produce a delayed data signal, and a transmission circuit coupled to the signal delay circuit, wherein the transmission circuit is configured to couple the delayed data signal to the node after a delay from a first edge of a clock signal.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Seid Hadi Rasouli, Animesh Datta, Saravanan Marimuthu, Ohsang Kwon
  • Publication number: 20140124868
    Abstract: A semiconductor standard cell includes an N-type diffusion area and a P-type diffusion area, both extending across the cell and also outside of the cell. The cell also includes a conductive gate above each diffusion area to create a semiconductive device. A pair of dummy gates are also above the N-type diffusion area and the P-type diffusion area creating a pair of dummy devices. The pair of dummy gates are disposed at opposite edges of the cell. The cell further includes a first conductive line configured to couple the dummy devices to power for disabling the dummy devices.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Pratyush Kamal, Esin Terzioglu, Foua Vang, Prayag Bhanubhai Patel, Giridhar Nallapati, Animesh Datta
  • Patent number: 8584075
    Abstract: Circuit elements are characterized for effects of proximity context on electrical characteristic. Based on the characterization, proximity context cell models, and corresponding modeled electrical characteristic values are obtained. Logic cells are characterized and modeled according to the proximity context cell models. Optionally the electrical characteristic can be time delay, leakage, dynamic power, or coupling noise among other parameters.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: November 12, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Animesh Datta, Pratyush Kamal, Prayag B. Patel, Xiaonan Zhang
  • Patent number: 8487658
    Abstract: Method and apparatus for voltage level shifters (VLS) design in bulk CMOS technology. A multi-voltage circuit or VLS that operate with different voltage levels and that provides area and power savings for multi-bit implementation of level shifter design. A two-bit VLS to shift bits from a first voltage level logic to a second voltage level logic. The VLS formed with a first N-well in a substrate. The VLS formed with a second N-well in the substrate, adjacent to a side of the first N-well. The VLS formed with a third N-well in the substrate, adjacent to a side of the first N-well and opposite the second N-well. A first one-bit VLS circuit having a portion formed on the first N-well and a portion formed on the second N-well. A second bit VLS circuit having a portion formed on the first N-well and a portion formed on the third N-well.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: July 16, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Animesh Datta, William James Goodall, III
  • Publication number: 20130015882
    Abstract: Method and apparatus for voltage level shifters (VLS) design in bulk CMOS technology. A multi-voltage circuit or VLS that operate with different voltage levels and that provides area and power savings for multi-bit implementation of level shifter design. A two-bit VLS to shift bits from a first voltage level logic to a second voltage level logic. The VLS formed with a first N-well in a substrate. The VLS formed with a second N-well in the substrate, adjacent to a side of the first N-well. The VLS formed with a third N-well in the substrate, adjacent to a side of the first N-well and opposite the second N-well. A first one-bit VLS circuit having a portion formed on the first N-well and a portion formed on the second N-well. A second bit VLS circuit having a portion formed on the first N-well and a portion formed on the third N-well.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 17, 2013
    Applicant: QUALCOMM INCORPORATED
    Inventors: Animesh Datta, William James Goodall, III
  • Publication number: 20120210284
    Abstract: Circuit elements are characterized for effects of proximity context on electrical characteristic. Based on the characterization, proximity context cell models, and corresponding modeled electrical characteristic values are obtained. Logic cells are characterized and modeled according to the proximity context cell models. Optionally the electrical characteristic can be time delay, leakage, dynamic power, or coupling noise among other parameters.
    Type: Application
    Filed: February 15, 2011
    Publication date: August 16, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: Animesh Datta, Pratyush Kamal, Prayag B. Patel, Xiaonan Zhang
  • Patent number: 8030982
    Abstract: A clock gating cell that comprises a latch in communication with an input enable logic and an output logic circuit, wherein the latch includes a pull-up and/or a pull-down circuit at an input node of the output logic circuit and circuitry preventing premature charge or discharge of the output logic circuit input node by the pull-up and/or the pull-down circuit when the clock gating cell is enabled.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: October 4, 2011
    Assignee: QUALCOMM Incorporated
    Inventors: Animesh Datta, Martin Saint-Laurent, Varun Verma, Prayag B. Patel
  • Publication number: 20100109747
    Abstract: A clock gating cell that comprises a latch in communication with an input enable logic and an output logic circuit, wherein the latch includes a pull-up and/or a pull-down circuit at an input node of the output logic circuit and circuitry preventing premature charge or discharge of the output logic circuit input node by the pull-up and/or the pull-down circuit when the clock gating cell is enabled.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Applicant: QUALCOMM Incorporated
    Inventors: Animesh Datta, Martin Saint-Laurent, Varun R. Verma, Prayag B. Patel