Patents by Inventor Anna W. Topol

Anna W. Topol has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9435800
    Abstract: Described are embodiments of an invention for a sample assembly with an electrical conductor for generating an electromagnetic field to speed up the tagging of target antigens with antiparticles for detection of the antigens by electromagnetic read heads. A sample assembly includes a surface with a first set of antibodies bonded thereon. Target antigens are bonded with the first set of antibodies. A second set of antibodies bonded to nanoparticles are exposed to the sample surface to bond with the target antigens. The electrical conductor generates an electromagnetic field that moves the nanoparticle-labeled antibodies toward the antigens to shorten the time to complete their bonding process.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 6, 2016
    Assignee: International Business Machines Corporation
    Inventors: Allen K. Bates, Nils Haustein, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski
  • Patent number: 9411022
    Abstract: According to one embodiment a method of performing a calibration correlation test for a calibration assembly includes sweeping a head module having a magnetic read sensor along a y-axis of the calibration assembly. The calibration assembly has at least one calibration trench having at least one nanoparticle at a known y-axis location in the calibration trench and the magnetic properties are known for the at least one nanoparticle. A read response of the at least one nanoparticles is obtained from the magnetic read sensor and a correlation is determined from the read response. The correlation of the read response is compared to a correlation threshold. The read response correlation is stored in memory in response to determining that the correlation of the read response is greater than the correlation threshold. When the correlation of the read response is not greater than the correlation threshold, a correlation test error is indicated.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: August 9, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: David Berman, Dylan J. Boday, Icko E. T. Iben, Wayne I. Imaino, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski
  • Publication number: 20160223624
    Abstract: The invention relates to the identification of molecules using an apparatus which includes: a head module comprising: an electromagnetic write-head configured to magnetically excite the molecule to be identified with an alternating magnetic field; and a magneto-resistive read sensor for measuring a resonant response of the magnetically excited molecule to be identified. The apparatus also includes a processor coupled to the magneto-resistive sensor, the processor being configured to compare the resonant response to a table of known resonant responses to identify a chemical composition of the molecule to be identified.
    Type: Application
    Filed: April 7, 2016
    Publication date: August 4, 2016
    Inventors: Allen K. Bates, Anna W. Topol, Daniel J. Winarski
  • Publication number: 20160223533
    Abstract: Described are embodiments of an invention for detecting target antigens in a biological sample using a sample assembly. Detection may be accomplished by performing a method comprising: sweeping a head module over the sample assembly, wherein said head module includes at least one magneto-resistive read sensor configured to detect target antigens via nanoparticles within the sample assembly; and detecting at least one particular antigen among the target antigens. Preferably, detecting the target antigens via the nanoparticles is based at least in part on detecting unique magnetic properties of particular nanoparticles specifically associated with different types of the target antigens. Detection using a magnetic read/write head in the sample assembly facilitates automation of sample detection with high speed and fidelity. Corresponding systems are also disclosed.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: Dylan J. Boday, Stephen L. Schwartz, Anna W. Topol, Sandra L. Waters, Daniel J. Winarski
  • Publication number: 20160178653
    Abstract: Embodiments of the disclosure relate to methods of storing and using biosamples with a cartridge that includes slots for storing biosample capillary tubes. The methods include providing access to a holder inside an enclosure of the cartridge, the enclosure having a same form factor as a data tape cartridge used in an automated tape library. The holder is configured to receive a plurality of capillary tubes in the holder, the capillary tubes including one or more biosamples. Exemplary methods may also include receiving capillary tubes in the cartridge, withdrawing capillary tubes from the cartridge, scanning and/or analyzing the capillary tubes and/or biosamples. Exemplary methods may additionally or alternatively include retrieving the cartridge from a storage slot of the automated tape library, loading the cartridge onto a drive of the automated tape library, and/or receiving and/or exporting a cartridge to/from the automated tape library via a mail slot.
    Type: Application
    Filed: February 25, 2016
    Publication date: June 23, 2016
    Inventors: Allen K. Bates, Nils Haustein, James W. Johnson, Thorsten Krause, Stephen L. Schwartz, Anna W. Topol, Ulf Troppens, Daniel J. Winarski
  • Publication number: 20160116496
    Abstract: Embodiments of the disclosure relate to a biosample cartridge that includes radial slots for storing biosample carriers. The biosample cartridge has the same form factor as data tape cartridges used in automated tape libraries to allow the biosample cartridge to be handled by the same robotic mechanisms that handle the data tape cartridges. One aspect of the disclosure concerns a biosample cartridge that includes a rotatable biosample carrier holder. The biosample carrier holder includes radial slots for receiving biosample carriers which optionally contain biosamples for scanning and analysis by automated tape libraries.
    Type: Application
    Filed: December 28, 2015
    Publication date: April 28, 2016
    Inventors: Allen K. Bates, Nils Haustein, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski
  • Patent number: 9310336
    Abstract: The invention relates to the identification of molecules using electromagnetic write-heads and magneto-resistive sensors. In one embodiment, an electromagnetic write-head magnetically excites a molecule with an alternating magnetic field. A magneto-resistive sensor measures the resonant response of the magnetically excited molecule. A processor compares the resonant response to a table of known responses of different molecules to identify the chemical composition of the molecule based in whole or in part on the comparison.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Allen K. Bates, Anna W. Topol, Daniel J. Winarski
  • Publication number: 20160091461
    Abstract: The invention relates to the identification of molecules using electromagnetic write-heads and magneto-resistive sensors. In one embodiment, an electromagnetic write-head magnetically excites a molecule with an alternating magnetic field. A magneto-resistive sensor measures the resonant response of the magnetically excited molecule. A processor compares the resonant response to a table of known responses of different molecules to identify the chemical composition of the molecule based in whole or in part on the comparison.
    Type: Application
    Filed: December 3, 2015
    Publication date: March 31, 2016
    Inventors: Allen K. Bates, Anna W. Topol, Daniel J. Winarski
  • Publication number: 20160047793
    Abstract: In one embodiment, a method of using a biosample storage cartridge includes performing bioanalysis on one or more biosamples in one or more biosample plates in a holder of a biosample storage cartridge, the biosample storage cartridge having an enclosure having a same form factor as a data tape cartridge that is configured for use in an automated tape library, the holder being disposed in the enclosure, wherein the holder comprises a plurality of slots, each slot being configured to receive a biosample plate. In another embodiment, a computer program product for using a biosample storage cartridge, the computer program product including a computer readable storage medium having program instructions embodied therewith, the program instructions executable by an analytical system to cause the analytical system to perform the foregoing method.
    Type: Application
    Filed: October 30, 2015
    Publication date: February 18, 2016
    Inventors: Allen K. Bates, Nils Haustein, James W. Johnson, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski
  • Publication number: 20160033499
    Abstract: Embodiments of the disclosure relate to a biosample plate that includes a memory component for storing biosample identification and analysis data, and a wireless communication interface for transferring the data to and from the biosample plate. In one embodiment, the biosample plate comprises a base for receiving a biosample, a memory component coupled to the base for storing identification and analysis information related to the biosample, and a wireless communication interface coupled to the memory component for transferring the information to and from the memory component. The wireless communication interface may include an optical device.
    Type: Application
    Filed: October 8, 2015
    Publication date: February 4, 2016
    Inventors: Nils Haustein, Thorsten Krause, Anna W. Topol, Daniel J. Winarski
  • Publication number: 20160033542
    Abstract: Embodiments of the disclosure relate to a biosample plate that includes a memory component for storing biosample identification and analysis data, and a wireless communication interface for transferring the data to and from the biosample plate. In one embodiment, the biosample plate comprises a base for receiving a biosample, a memory component coupled to the base for storing identification and analysis information related to the biosample, and a wireless communication interface coupled to the memory component for transferring the information to and from the memory component. The wireless communication interface may include an electromagnetic device.
    Type: Application
    Filed: October 8, 2015
    Publication date: February 4, 2016
    Inventors: Nils Haustein, Thorsten Krause, Anna W. Topol, Daniel J. Winarski
  • Patent number: 9250254
    Abstract: Embodiments of the disclosure relate to a biosample cartridge that includes radial slots for storing biosample carriers. The biosample cartridge has the same form factor as data tape cartridges used in automated tape libraries to allow the biosample cartridge to be handled by the same robotic mechanisms that handle the data tape cartridges. One aspect of the disclosure concerns a biosample cartridge that includes a rotatable biosample carrier holder. The biosample carrier holder includes radial slots for receiving biosample carriers which contain biosamples scanned and analyzed by automated tape libraries.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: February 2, 2016
    Assignee: International Business Machines Corporation
    Inventors: Allen K. Bates, Nils Haustein, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski
  • Publication number: 20160018392
    Abstract: A sample assembly includes an outer layer with at least one sample trench. The sample trench includes a first set of antibodies that are bonded on a first surface of a base layer. Target antigens are bonded with the first set of antibodies, and a second set of antibodies are bonded to the target antigens. Further, the sample trench includes nanoparticles that are bonded to the second set of antibodies.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: Dylan J. Boday, Stephen L. Schwartz, Anna W. Topol, Sandra L. Waters, Daniel J. Winarski
  • Patent number: 9218956
    Abstract: A structure for a semiconductor component is provided having a bi-layer capping coating integrated and built on supporting layer to be transferred. The bi-layer capping protects the layer to be transferred from possible degradation resulting from the attachment and removal processes of the carrier assembly used for layer transfer. A wafer-level layer transfer process using this structure is enabled to create three-dimensional integrated circuits.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: December 22, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sampath Purushothaman, Anna W. Topol
  • Patent number: 9207229
    Abstract: In one embodiment, a biosample storage cartridge includes an enclosure having a same form factor as a data tape cartridge configured for use in an automated tape library; and a holder disposed in the enclosure. In another embodiment, a biosample storage cartridge includes an enclosure and a holder disposed in the enclosure; the holder is configured to receive one or more biosamples, the cartridge is structurally configured to be picked by a picker of an access robot that is configured to pick a data tape cartridge in an automated tape library. In still another embodiment, an analytical system includes a bioanalysis drive configured to perform bioanalysis on one or more biosamples received from at least one biosample storage cartridge.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: December 8, 2015
    Assignee: International Business Machines Corporation
    Inventors: Allen K. Bates, Nils Haustein, James W. Johnson, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski
  • Patent number: 9081004
    Abstract: A circuit for detecting antigens on biosample tracks comprising a processor, an electromagnetic write head for magnetizing nanoparticles attached to the antigens via antibodies in response to a write signal from the processor, and a first amplifier for supplying power to the write head. The circuit further comprises a magneto-resistive read sensor for detecting the magnetized nanoparticles upon receiving a read signal from the processor, and a second amplifier for supplying power to the read sensor. The write head and read sensor may be part of a head module in a magnetic tape drive. Nanoparticles of differing magnetic properties may be selectively paired with antibodies associated with different antigens to allow different antigens to be detected upon a single scan by the read-sensor.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: July 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dylan Joseph Boday, Louie Arthur Dickens, Steven Mark Groff, Icko Eric Timothy Iben, Wayne Alan McKinley, Lee Curtis Randall, Stephen Leonard Schwartz, Anna W. Topol, Daniel James Winarski
  • Patent number: 9034660
    Abstract: A first set of antibodies are bonded to a substrate, and are exposed to and bonded with target antigens. A second set of antibodies are bonded to nanoparticles, and the nanoparticle labeled antibodies are exposed to the targeted antigens. An electromagnetic write-head magnetizes the nanoparticles, and then a read-sensor detects the freshly magnetized nanoparticles. The substrate comprises a flexible film or a Peltier material to allow selective heating and cooling of the antigens and antibodies. Nanoparticles of different magnetic properties may be selectively paired with antibodies associated with different antigens to allow different antigens to be detected upon a single scan by the read-sensor.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dylan Joseph Boday, Lee Curtis Randall, Stephen Leonard Schwartz, Anna W. Topol, Daniel James Winarski
  • Publication number: 20150097576
    Abstract: According to one embodiment, a calibration assembly includes an outer layer having at least one calibration trench extending along a y-axis, and an encapsulation layer within the calibration trench. The encapsulation layer has a plurality of nanoparticles spaced apart along said y-axis of said at least one calibration trench. Each of said plurality of nanoparticles are provided at known y-axis locations in said calibration trench, and each of the plurality of nanoparticles have a known magnetic property.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: David Berman, Dylan J. Boday, Icko E. T. Iben, Wayne I. Imaino, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski
  • Publication number: 20150097552
    Abstract: According to one embodiment a method of performing a calibration correlation test for a calibration assembly includes sweeping a head module having a magnetic read sensor along a y-axis of the calibration assembly. The calibration assembly has at least one calibration trench having at least one nanoparticle at a known y-axis location in the calibration trench and the magnetic properties are known for the at least one nanoparticle. A read response of the at least one nanoparticles is obtained from the magnetic read sensor and a correlation is determined from the read response. The correlation of the read response is compared to a correlation threshold. The read response correlation is stored in memory in response to determining that the correlation of the read response is greater than the correlation threshold. When the correlation of the read response is not greater than the correlation threshold, a correlation test error is indicated.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: David Berman, Dylan J. Boday, Icko E. T. Iben, Wayne I. Imaino, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski
  • Publication number: 20150015246
    Abstract: Described are embodiments to calibrate read sensors, which in turn may ensure that the equipment utilized to detect antigens is reliable and accurate. If it is determined that a read sensor is degraded a method of calibrating a read sensor of a read head may be used.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 15, 2015
    Inventors: David Berman, Dylan J. Boday, Icko E. T. Iben, Wayne I. Imaino, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski