Patents by Inventor António José Marques Trindade

António José Marques Trindade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220285291
    Abstract: A micro-component module comprises a module substrate, a component disposed on the module substrate, and at least a portion of a module tether in contact with the module substrate. The module substrate can be flexible or can comprise an organic material, or both. The module tether can be more brittle and less flexible than the module substrate. The component can be less flexible than the module substrate and can comprise at least a portion of a component tether. An encapsulation layer can be disposed over the component and module substrate. The component can be disposed in a mechanically neutral stress plane of the micro-component module. A micro-component module system can comprise a micro-component module disposed on a flexible system substrate, for example by micro-transfer printing. A micro-component module can comprise an internal module cavity in the module substrate with internal module tethers physically connecting the module substrate to internal anchors.
    Type: Application
    Filed: January 31, 2022
    Publication date: September 8, 2022
    Inventors: António José Marques Trindade, Ronald S. Cok, Pierluigi Rubino
  • Patent number: 11398399
    Abstract: A component source wafer comprises printable components having adhesive disposed on a backside of the printable components. A wafer substrate comprises a sacrificial layer having recessed portions and anchors. A component is disposed entirely over each recessed portion. A tether physically connects each component to at least one of the anchors. A layer of adhesive is disposed on a side of the component adjacent to the recessed portion. Each component is suspended over the wafer substrate and the recessed portion defines a gap separating the component from the wafer substrate.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: July 26, 2022
    Assignee: X Display Company Technology Limited
    Inventors: António José Marques Trindade, Raja Fazan Gul, Ronald S. Cok
  • Patent number: 11367648
    Abstract: A micro-device structure comprises a source substrate comprising sacrificial portions laterally spaced apart by anchors. Each sacrificial portion is exposed through an opening. A micro-device is disposed on each sacrificial portion and laterally attached to an anchor by a multi-layer tether. In certain embodiments, a micro-device structure is constructed by providing the source substrate, disposing micro-devices on each sacrificial portion, depositing a first tether layer over at least a portion of the source substrate and the micro-device, depositing a second tether layer over the first tether layer, and patterning the first tether layer and the second tether layer to form (i) a multi-layer tether for each of the micro-devices such that the multi-layer tether laterally attaches the micro-device to one of the anchors, and (ii) an opening exposing each of the sacrificial portions.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: June 21, 2022
    Assignee: X Display Company Technology Limited
    Inventors: António José Marques Trindade, Christopher Andrew Bower
  • Publication number: 20220162056
    Abstract: A overhanging device cavity structure comprises a substrate and a cavity disposed in or on the substrate. The cavity comprises a first cavity side wall and a second cavity side wall opposing the first cavity side wall on an opposite side of the cavity from the first cavity side wall. A support extends from the first cavity side wall to the second cavity side wall and at least partially divides the cavity. A device is disposed on, for example in direct contact with, the support and extends from the support into the cavity.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 26, 2022
    Inventors: Raja Fazan Gul, Ronald S. Cok, Steven Kelleher, António José Marques Trindade, Alin Mihai Fecioru, David Gomez, Christopher Andrew Bower, Salvatore Bonafede, Matthew Alexander Meitl
  • Publication number: 20220112073
    Abstract: A micro-device structure comprises a source substrate having a sacrificial layer comprising a sacrificial portion adjacent to an anchor portion, a micro-device disposed completely over the sacrificial portion, the micro-device having a top side opposite the sacrificial portion and a bottom side adjacent to the sacrificial portion and comprising an etch hole that extends through the micro-device from the top side to the bottom side, and a tether that physically connects the micro-device to the anchor portion. A micro-device structure comprises a micro-device disposed on a target substrate. Micro-devices can be any one or more of an antenna, a micro-heater, a power device, a MEMs device, and a micro-fluidic reservoir.
    Type: Application
    Filed: September 14, 2021
    Publication date: April 14, 2022
    Inventors: António José Marques Trindade, Pierluigi Rubino
  • Patent number: 11274035
    Abstract: A overhanging device cavity structure comprises a substrate and a cavity disposed in or on the substrate. The cavity comprises a first cavity side wall and a second cavity side wall opposing the first cavity side wall on an opposite side of the cavity from the first cavity side wall. A support extends from the first cavity side wall to the second cavity side wall and at least partially divides the cavity. A device is disposed on, for example in direct contact with, the support and extends from the support into the cavity.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: March 15, 2022
    Assignee: X-Celeprint Limited
    Inventors: Raja Fazan Gul, Ronald S. Cok, Steven Kelleher, António José Marques Trindade, Alin Mihai Fecioru, David Gomez, Christopher Andrew Bower, Salvatore Bonafede, Matthew Alexander Meitl
  • Publication number: 20210375795
    Abstract: A micro-component comprises a component substrate having a first side and an opposing second side. Fenders project from the first and second sides of the component substrate and include first-side fenders extending from the first side and a second-side fender extending from the second side of the component substrate. At least two of the first-side fenders have a non-conductive surface and are disposed closer to a corner of the component substrate than to a center of the component substrate.
    Type: Application
    Filed: July 2, 2021
    Publication date: December 2, 2021
    Inventors: António José Marques Trindade, Ronald S. Cok
  • Publication number: 20210259114
    Abstract: A method of printing comprises providing a component source wafer comprising components, a transfer device, and a patterned substrate. The patterned substrate comprises substrate posts that extend from a surface of the patterned substrate. Components are picked up from the component source wafer by adhering the components to the transfer device. One or more of the picked-up components are printed to the patterned substrate by disposing each of the one or more picked-up components onto one of the substrate posts, thereby providing one or more printed components in a printed structure.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 19, 2021
    Inventors: David Gomez, Christopher Andrew Bower, Raja Fazan Gul, António José Marques Trindade, Ronald S. Cok
  • Publication number: 20210246017
    Abstract: An example of a cavity structure comprises a cavity substrate comprising a substrate surface, a cavity extending into the cavity substrate, the cavity having a cavity bottom and cavity walls, and a cap disposed on a side of the cavity opposite the cavity bottom. The cavity substrate, the cap, and the one or more cavity walls form a cavity enclosing a volume. A component can be disposed in the cavity and can extend above the substrate surface. The component can be a piezoelectric or a MEMS device. The cap can have a tophat configuration. The cavity structure can be micro-transfer printed from a source wafer to a destination substrate.
    Type: Application
    Filed: April 29, 2021
    Publication date: August 12, 2021
    Inventors: Ronald S. Cok, Raja Fazan Gul, António José Marques Trindade
  • Publication number: 20210246018
    Abstract: An example of a cavity structure comprises a cavity substrate comprising a substrate surface, a cavity extending into the cavity substrate, the cavity having a cavity bottom and cavity walls, and a cap disposed on a side of the cavity opposite the cavity bottom. The cavity substrate, the cap, and the one or more cavity walls form a cavity enclosing a volume. A component can be disposed in the cavity and can extend above the substrate surface. The component can be a piezoelectric or a MEMS device. The cap can have a tophat configuration. The cavity structure can be micro-transfer printed from a source wafer to a destination substrate.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 12, 2021
    Inventors: Ronald S. Cok, Raja Fazan Gul, António José Marques Trindade
  • Patent number: 11088093
    Abstract: A micro-component comprises a component substrate having a first side and an opposing second side. Fenders project from the first and second sides of the component substrate and include first-side fenders extending from the first side and a second-side fender extending from the second side of the component substrate. At least two of the first-side fenders have a non-conductive surface and are disposed closer to a corner of the component substrate than to a center of the component substrate.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: August 10, 2021
    Assignee: X-Celeprint Limited
    Inventors: António José Marques Trindade, Ronald S. Cok
  • Publication number: 20210198100
    Abstract: An example of a cavity structure comprises a cavity substrate comprising a substrate surface, a cavity extending into the cavity substrate, the cavity having a cavity bottom and cavity walls, and a cap disposed on a side of the cavity opposite the cavity bottom. The cavity substrate, the cap, and the one or more cavity walls form a cavity enclosing a volume. A component can be disposed in the cavity and can extend above the substrate surface. The component can be a piezoelectric or a MEMS device. The cap can have a tophat configuration. The cavity structure can be micro-transfer printed from a source wafer to a destination substrate.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: Ronald S. Cok, Raja Fazan Gul, António José Marques Trindade
  • Patent number: 11024608
    Abstract: An exemplary micro-device and substrate structure includes a destination substrate and one or more contact pads disposed thereon, a micro-device disposed on or over the destination substrate, and a layer of cured adhesive disposed on the destination substrate. The micro-device comprises at least one electrical contact. The at least one electrical contact is in direct electrical contact with the one or more contact pads. The adhesive layer adheres the micro-device to the destination substrate and is in contact with the one or more contact pads. An exemplary method of making a micro-device and substrate structure includes providing a destination substrate and one or more contact pads disposed thereon, coating a layer of curable adhesive, disposing a micro-device comprising at least one electrical contact on the layer and curing the layer thereby directly electrically contacting the at least one electrical contact with the one or more contact pads.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: June 1, 2021
    Assignee: X Display Company Technology Limited
    Inventors: Matthew Meitl, Brook Raymond, Ronald S. Cok, Christopher Andrew Bower, Salvatore Bonafede, Erich Radauscher, Carl Ray Prevatte, Jr., António José Marques Trindade, Tanya Yvette Moore
  • Publication number: 20210135649
    Abstract: A suspended device structure comprises a substrate, a cavity disposed in a surface of the substrate, and a device suspended entirely over a bottom of the cavity. The device is a piezoelectric device and is suspended at least by a tether that physically connects the device to the substrate. The tether has a non-linear centerline. A wafer can comprise a plurality of suspended device structures. A device structure can comprise a device over a sacrificial portion or cavity and a tether with a tether opening extending to the sacrificial portion or cavity. The tether or tether opening can have a T shape. The tether can have a tether length at least one third as large as a device length and the device can have a device length at least twice as large as a device width.
    Type: Application
    Filed: August 28, 2020
    Publication date: May 6, 2021
    Inventors: António José Marques Trindade, Raja Fazan Gul, Lei Liu, Ronald S. Cok
  • Publication number: 20210135648
    Abstract: A suspended device structure comprises a substrate, a cavity disposed in a surface of the substrate, and a device suspended entirely over a bottom of the cavity. The device is a piezoelectric device and is suspended at least by a tether that physically connects the device to the substrate. The tether has a non-linear centerline. A wafer can comprise a plurality of suspended device structures.
    Type: Application
    Filed: October 30, 2019
    Publication date: May 6, 2021
    Inventors: António José Marques Trindade, Lei Liu, Ronald S. Cok
  • Patent number: 10964583
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: March 30, 2021
    Assignee: X Display Company Technology Limited
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Publication number: 20210061645
    Abstract: An example of a cavity structure comprises a cavity substrate comprising a substrate surface, a cavity extending into the cavity substrate, the cavity having a cavity bottom and cavity walls, and a cap disposed on a side of the cavity opposite the cavity bottom. The cavity substrate, the cap, and the one or more cavity walls form a cavity enclosing a volume. A component can be disposed in the cavity and can extend above the substrate surface. The component can be a piezoelectric or a MEMS device. The cap can have a tophat configuration. The cavity structure can be micro-transfer printed from a source wafer to a destination substrate.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Inventors: Ronald S. Cok, Raja Fazan Gul, António José Marques Trindade
  • Publication number: 20210024349
    Abstract: An example of a cavity structure comprises a cavity substrate comprising a substrate surface, a cavity extending into the cavity substrate, the cavity having a cavity bottom and cavity walls, and a cap disposed on a side of the cavity opposite the cavity bottom. The cavity substrate, the cap, and the one or more cavity walls form a cavity enclosing a volume. A component can be disposed in the cavity and can extend above the substrate surface. The component can be a piezoelectric or a MEMS device. The cap can have a tophat configuration. The cavity structure can be micro-transfer printed from a source wafer to a destination substrate.
    Type: Application
    Filed: October 8, 2020
    Publication date: January 28, 2021
    Inventors: Ronald S. Cok, Raja Fazan Gul, António José Marques Trindade
  • Publication number: 20210020491
    Abstract: A micro-device structure comprises a source substrate comprising sacrificial portions laterally spaced apart by anchors. Each sacrificial portion is exposed through an opening. A micro-device is disposed on each sacrificial portion and laterally attached to an anchor by a multi-layer tether. In certain embodiments, a micro-device structure is constructed by providing the source substrate, disposing micro-devices on each sacrificial portion, depositing a first tether layer over at least a portion of the source substrate and the micro-device, depositing a second tether layer over the first tether layer, and patterning the first tether layer and the second tether layer to form (i) a multi-layer tether for each of the micro-devices such that the multi-layer tether laterally attaches the micro-device to one of the anchors, and (ii) an opening exposing each of the sacrificial portions.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Inventors: António José Marques Trindade, Christopher Andrew Bower
  • Publication number: 20210002128
    Abstract: An example of a cavity structure comprises a cavity substrate comprising a substrate surface, a cavity extending into the cavity substrate, the cavity having a cavity bottom and cavity walls, and a cap disposed on a side of the cavity opposite the cavity bottom. The cavity substrate, the cap, and the one or more cavity walls form a cavity enclosing a volume. A component can be disposed in the cavity and can extend above the substrate surface. The component can be a piezoelectric or a MEMS device. The cap can have a tophat configuration. The cavity structure can be micro-transfer printed from a source wafer to a destination substrate.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Ronald S. Cok, Raja Fazan Gul, António José Marques Trindade