Patents by Inventor Anthony D. Wondka

Anthony D. Wondka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190175067
    Abstract: Apparatuses are described to accurately determine a gas concentration of a sample of a patient's breath. The apparatuses may include a sample compartment, a breath speed analyzer, a gas analyzer, and a processor. The sample compartment includes an inlet that receives the breath. The breath speed analyzer determines the speed of a portion of the breath. The gas analyzer determines a gas concentration. The processor includes an algorithm that determines a degree of non-homogeneity of the sample based on the speed, and a corrected gas concentration based on the degree of non-homogeneity. In some variations, the gas correction is determined independently of patient cooperation. Apparatuses may be tuned based on the intended population's expected breathing pattern ranges such that the sample compartment is filled with a homogenous end-tidal gas sample regardless of an individual's breathing pattern. These apparatuses are useful, for example, for end-tidal CO analysis. Methods are also described.
    Type: Application
    Filed: July 25, 2018
    Publication date: June 13, 2019
    Inventors: Anthony D. WONDKA, Anish BHATNAGAR
  • Publication number: 20190142303
    Abstract: Breath analysis systems and methods test for infectious diseases in exhaled breath gas or condensate. An automatic breath sampling system can obtain reliable samples over a variety of clinical situations. In some variations, the system is modular system and can protect the equipment and clinician from contamination. In some variations, the system can be a point-of-care rapid-result instrument. In some variations, can be configured for off-line analysis in which case the collected sample is presented to a stand-alone analyzer for measurement.
    Type: Application
    Filed: June 14, 2018
    Publication date: May 16, 2019
    Inventors: Anthony D. WONDKA, Anish BHATNAGAR
  • Patent number: 10252020
    Abstract: A respiratory support ventilator apparatus mechanically supports the work of respiration of a patient. The ventilator apparatus is highly portable and optionally wearable so as to promote mobility and physical activity of the patient, and to improve the overall health of the patient. The respiratory support ventilator may monitor a physical activity level and overall health status of the patient, and process this information. The information is used to track efficacy of the ventilation therapy relative to activity level and quality of life, and or to titrate or optimize the ventilation parameters to improve, maintain or optimize the physical activity level and overall health status of the patient.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 9, 2019
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Angela King, Joseph Cipollone
  • Patent number: 10232136
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: March 19, 2019
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Publication number: 20190021632
    Abstract: Methods and systems are described to obtain and analyze one or more gas samples from the breath of a person, and organizing the samples in a sample registry for subsequent analysis. This technique solves the various problems that are associated with targeting an individual breath for analysis, and allows for additional versatility and options in the analysis process.
    Type: Application
    Filed: February 15, 2018
    Publication date: January 24, 2019
    Inventors: Elvir CAUSEVIC, Anthony D. WONDKA, Anish BHATNAGAR
  • Patent number: 10099028
    Abstract: A portable liquid oxygen system may provide an average flow rate of oxygen gas at approximately 6-approximately 20 lpm using a rapid gas conversion mode. The rapid gas conversion mode utilizes a Stirling engine that harnesses the heat differential between the ambient temperature and the liquid oxygen store to drive a fan. The fan operates to blow ambient air across a heat exchanger, which allows the heat exchanger to more rapidly evaporate liquid oxygen into oxygen gas.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: October 16, 2018
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, Todd W. Allum
  • Patent number: 10046133
    Abstract: A system for providing ventilation support to a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle at the distal end of the gas delivery circuit; and at least one spontaneous respiration sensor for detecting respiration in communication with the control unit. The system may be open to ambient. The control unit may receive signals from the at least one spontaneous respiration sensor and determine gas delivery requirements. The ventilator may deliver gas at a velocity to entrain ambient air and increase lung volume or lung pressure above spontaneously breathing levels to assist in work of breathing, and deliver ventilation gas in a cyclical delivery pattern synchronized with a spontaneous breathing pattern.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: August 14, 2018
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Joseph Cipollone, Anthony D. Wondka, Anthony Gerber, Todd Allum, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 10034621
    Abstract: Apparatuses are described to accurately determine a gas concentration of a sample of a patient's breath. The apparatuses may include a sample compartment, a breath speed analyzer, a gas analyzer, and a processor. The sample compartment includes an inlet that receives the breath. The breath speed analyzer determines the speed of a portion of the breath. The gas analyzer determines a gas concentration. The processor includes an algorithm that determines a degree of non-homogeneity of the sample based on the speed, and a corrected gas concentration based on the degree of non-homogeneity. In some variations, the gas correction is determined independently of patient cooperation. Apparatuses may be tuned based on the intended population's expected breathing pattern ranges such that the sample compartment is filled with a homogenous end-tidal gas sample regardless of an individual's breathing pattern. These apparatuses are useful, for example, for end-tidal CO analysis. Methods are also described.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: July 31, 2018
    Assignee: Capnia, Inc.
    Inventors: Anthony D. Wondka, Anish Bhatnagar
  • Patent number: 9962512
    Abstract: A system for supplying ventilatory support may include a nasal interface configured to communicate with a patient's nose while allowing the patient to breathe ambient air directly without flowing through the nasal interface. A nozzle may be associated with the nasal interface at a distance from a nose. The nozzle may be connectable to the gas delivery circuit and the gas delivery source. The nozzle may be capable of delivering gas into the nasal passage by creating negative pressure area near the nozzle and a positive pressure area near the entrance to the nose. A combination of gas from the gas delivery source and air entrained from the gas exiting the nozzle may provide ventilatory support.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: May 8, 2018
    Assignee: Breathe Technologies, Inc.
    Inventors: Joseph Cipollone, Joey Aguirre, Todd Allum, Darius Eghbal, Anthony D. Wondka
  • Patent number: 9675774
    Abstract: A non-invasive ventilation system may include an interface. The interface may include at least one gas delivery jet nozzle adapted to be positioned in free space and aligned to directly deliver ventilation gas into an entrance of a nose. The at least one gas delivery jet nozzle may be connected to a pressurized gas supply. The ventilation gas may entrain ambient air to elevate lung pressure, elevate lung volume, decrease the work of breathing or increase airway pressure, and wherein the ventilation gas is delivered in synchrony with phases of breathing. A support for the at least one gas delivery jet nozzle may be provided. A breath sensor may be in close proximity to the entrance of the nose. A patient may spontaneous breathe ambient air through the nose without being impeded by the interface.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: June 13, 2017
    Assignee: Breathe Technologies, Inc.
    Inventors: Joseph Cipollone, Gregory Kapust, Todd Allum, Anthony D. Wondka, Darius Eghbal, Joey Aguirre, Anthony Gerber
  • Publication number: 20170157348
    Abstract: Resuscitation apparatuses and methods for assisted ventilation are described herein. The apparatuses may include functional elements that allow the manual delivery of a prescribed volume to an adult or an infant lung. Furthermore, the apparatuses may inform and assure an emergency worker that an appropriate volume is being delivered and therefore lessen the possibility of barotrauma from over-delivery, or ventilatory distress from under-delivery. In some embodiments, the apparatuses include biomechanical and ergonomic functional elements that allow an adult hand to hold it in place during operation, while at the same time, allowing the user to actuate the apparatus to deliver only the necessary amount of volume suitable for an infant lung. In other embodiments, a volume-controlled design is applied to pediatric and adult resuscitation.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 8, 2017
    Inventors: Constantine Andrew GILLESPIE, Otho Newman BOONE, Pedro E. DE LA SERNA, Anthony D. WONDKA
  • Patent number: 9358358
    Abstract: Systems and methods are provided for humidifying ventilation gas. Systems and methods may include a nasal interface apparatus for receiving ventilation gas from gas delivery tubing and for humidifying ventilation gas. The nasal interface apparatus may have one or more channels within the nasal interface to deliver gas from a gas delivery circuit to a patient's nose; one or more structures in fluid communication with the one or more channels to direct ventilation gas to the patient's nose; and a hygroscopic material within the nasal interface in the flow path of the ventilation gas.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: June 7, 2016
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, George A. Kassanis, Todd W. Allum, Enrico Brambilla
  • Publication number: 20160106343
    Abstract: Breath analysis systems and methods test for infectious diseases in exhaled breath gas or condensate. An automatic breath sampling system can obtain reliable samples over a variety of clinical situations. In some variations, the system is modular system and can protect the equipment and clinician from contamination. In some variations, the system can be a point-of-care rapid-result instrument. In some variations, can be configured for off-line analysis in which case the collected sample is presented to a stand-alone analyzer for measurement.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 21, 2016
    Inventors: Anthony D. WONDKA, Anish BHATNAGAR
  • Publication number: 20160095997
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: December 10, 2015
    Publication date: April 7, 2016
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Publication number: 20160060355
    Abstract: Methods for administering immune globulin and devices for use thereof. The methods may generally include measuring a patient's hemolysis levels and determining whether the patient is suitable for immune globulin treatment, determining whether immune globulin treatment should be continued, and/or determining if the dose needs to be changed.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 3, 2016
    Inventors: Anish BHATNAGAR, Anthony D. WONDKA
  • Publication number: 20160045695
    Abstract: A non-invasive ventilation system may include at least one outer tube with a proximal lateral end of the outer tube adapted to extend to a side of a nose. The at least one outer tube may also include a throat section. At least one coupler may be located at a distal section of the outer tube for impinging at least one nostril and positioning the at least one outer tube relative to the at least one nostril. At least one jet nozzle may be positioned within the outer tube at the proximal lateral end and in fluid communication with a pressurized gas supply. At least one opening in the distal section may be adapted to be in fluid communication with the nostril. At least one aperture in the at least one outer tube may be in fluid communication with ambient air. The at least one aperture may be in proximity to the at least one jet nozzle.
    Type: Application
    Filed: September 29, 2015
    Publication date: February 18, 2016
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Joey Aguirre, Darius Eghbal, Anthony Gerber
  • Patent number: 9227034
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: January 5, 2016
    Assignee: Beathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 9199053
    Abstract: Embodiments of the present invention may provide ventilation to a patient's lung or airway using a nasal ventilation mask, as part of either a non-invasive ventilation system (NIV) or a non-invasive open-airway ventilation system (NIOV). A ventilation mask may include a rigid or semi-rigid manifold housing. A compliant tube may be located within the manifold housing for forming a main gas pathway through the manifold housing. One or more nasal connectors may be fluidly coupled to the main gas pathway in the compliant tube. A system for sensing airflow through a patient's nose may include a sensing port with a distal opening that opens to a main gas pathway. A protrusion on at least one side of the distal opening may protrude into the main gas pathway.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: December 1, 2015
    Assignee: Breathe Technologies, Inc.
    Inventors: Todd W. Allum, Darius Eghbal, Jose J. Aguirre, Jr., Anthony D. Wondka, Joseph Cipollone
  • Patent number: 9180270
    Abstract: A non-invasive ventilation system may include at least one outer tube with a proximal lateral end of the outer tube adapted to extend to a side of a nose. The at least one outer tube may also include a throat section. At least one coupler may be located at a distal section of the outer tube for impinging at least one nostril and positioning the at least one outer tube relative to the at least one nostril. At least one jet nozzle may be positioned within the outer tube at the proximal lateral end and in fluid communication with a pressurized gas supply. At least one opening in the distal section may be adapted to be in fluid communication with the nostril. At least one aperture in the at least one outer tube may be in fluid communication with ambient air. The at least one aperture may be in proximity to the at least one jet nozzle.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 10, 2015
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Joey Aguirre, Darius Eghbal, Anthony Gerber, Lutz Freitag
  • Publication number: 20150265184
    Abstract: Methods and systems are described to automatically obtain and analyze a lung airway gas sample from the breath of a person for compositional analysis. These techniques may provide an improved method for example for accurately and reliably measuring nitric oxide for asthma assessment in young children and non-cognizant patients.
    Type: Application
    Filed: March 20, 2015
    Publication date: September 24, 2015
    Inventors: Anthony D. WONDKA, Anish BHATNAGAR