Patents by Inventor Anthony D. Wondka

Anthony D. Wondka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120118285
    Abstract: A portable liquid oxygen system may provide an average flow rate of oxygen gas at approximately 6-approximately 20 lpm using a rapid gas conversion mode.
    Type: Application
    Filed: August 16, 2011
    Publication date: May 17, 2012
    Applicant: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, Todd W. Allum
  • Patent number: 8177769
    Abstract: Lung volume reduction is performed in a minimally invasive manner by isolating a lung tissue segment, optionally reducing gas flow obstructions within the segment, and aspirating the segment to cause the segment to at least partially collapse. Further optionally, external pressure may be applied on the segment to assist in complete collapse. Reduction of gas flow obstructions may be achieved in a variety of ways, including over inflation of the lung, introduction of mucolytic or dilation agents, application of vibrational energy, induction of absorption atelectasis, or the like. Optionally, diagnostic procedures on the isolated lung segment may be performed, typically using the same isolation/access catheter.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: May 15, 2012
    Assignee: Pulmonx Corporation
    Inventors: Rodney C. Perkins, Peter P. Soltesz, Robert Kotmel, Anthony D. Wondka
  • Publication number: 20120073576
    Abstract: A nasal ventilation interface including a pair of tubes configured to deliver a ventilation gas. The tubes are attachable at a first end to a ventilation gas supply hose and engageable at a second end with a person's nostril. A coupler is configured to align the pair of tubes with the person's nostrils, wherein each tube has an absence of pneumatic interconnection with the other tube.
    Type: Application
    Filed: December 9, 2011
    Publication date: March 29, 2012
    Applicant: Breathe Technologies, Inc.
    Inventor: Anthony D. Wondka
  • Publication number: 20110214676
    Abstract: Systems and methods may include a gas source, a gas delivery circuit, and a nasal interface allowing breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. At least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end gas flow path opening. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure or lung pressure or provide ventilatory support.
    Type: Application
    Filed: September 3, 2010
    Publication date: September 8, 2011
    Applicant: Breathe Technologies, Inc.
    Inventors: Todd Allum, Joey Aguirre, Joseph Cipollone, Darius Eghbal, Gregory Kapust, Anthony D. Wondka
  • Publication number: 20110197885
    Abstract: Improved methods and devices are described for sensing the respiration pattern of a patient and controlling ventilator functions, particularly for use in an open ventilation system. A ventilation and breath sensing apparatus may include a ventilation gas delivery circuit and a ventilation tube coupled to the ventilation gas delivery circuit. A plurality of pressure sensing elements may be separated by a distance and may produce independent signals. The signals may be used to detect pressure differentials between the plurality of pressure sensing elements. Sensing ports may be located in an airway, and connected to transducers that are valved to optimize sensitivity and overpressure protection. Airway pressure and flow can both be obtained and used to optimize ventilator synchronization and therapy.
    Type: Application
    Filed: April 17, 2009
    Publication date: August 18, 2011
    Applicant: BREATHE TECHNOLOGIES ,INC.
    Inventors: Anthony D. Wondka, Robert F. Bryan, Mark McCall, Cuong Q. Tran
  • Publication number: 20110094518
    Abstract: A system for supplying ventilatory support may include a nasal interface configured to communicate with a patient's nose while allowing the patient to breathe ambient air directly without flowing through the nasal interface. A nozzle may be associated with the nasal interface at a distance from a nose. The nozzle may be connectable to the gas delivery circuit and the gas delivery source. The nozzle may be capable of delivering gas into the nasal passage by creating negative pressure area near the nozzle and a positive pressure area near the entrance to the nose. A combination of gas from the gas delivery source and air entrained from the gas exiting the nozzle may provide ventilatory support.
    Type: Application
    Filed: September 3, 2010
    Publication date: April 28, 2011
    Applicant: Breathe Technologies, Inc.
    Inventors: Joseph Cipollone, Joey Aguirre, Todd Allum, Darius Eghbal, Anthony D. Wondka
  • Publication number: 20100280538
    Abstract: Lung volume reduction is performed in a minimally invasive manner by isolating a lung tissue segment, optionally reducing gas flow obstructions within the segment, and aspirating the segment to cause the segment to at least partially collapse. Further optionally, external pressure may be applied on the segment to assist in complete collapse. Reduction of gas flow obstructions may be achieved in a variety of ways, including over inflation of the lung, introduction of mucolytic or dilation agents, application of vibrational energy, induction of absorption atelectasis, or the like. Optionally, diagnostic procedures on the isolated lung segment may be performed, typically using the same isolation/access catheter.
    Type: Application
    Filed: June 22, 2010
    Publication date: November 4, 2010
    Applicant: Pulmonx Corporation
    Inventors: Rodney C. Perkins, Peter P. Soltesz, Robert Kotmel, Anthony D. Wondka
  • Publication number: 20100252037
    Abstract: A non-invasive ventilation system may include a nasal interface. The nasal interface may include a left outer tube with a left distal end adapted to impinge a left nostril, at least one left opening in the left distal end in pneumatic communication with the left nostril, and a left proximal end of the left outer tube in fluid communication with ambient air. The left proximal end of the left outer tube may curve laterally away from a midline of a face. A right outer tube may be similarly provided. One or more left jet nozzles may direct ventilation gas into the left outer tube, and one or more right jet nozzles may direct ventilation gas into the right outer tube. The jet nozzles may be in fluid communication with the pressurized gas supply.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Todd Allum, Joseph Cipollone, Gregory Kapust, Darius Eghbal, Joey Aguirre, Anthony Gerber
  • Publication number: 20100252041
    Abstract: A system for providing ventilation support to a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle at the distal end of the gas delivery circuit; and at least one spontaneous respiration sensor for detecting respiration in communication with the control unit. The system may be open to ambient. The control unit may receive signals from the at least one spontaneous respiration sensor and determine gas delivery requirements. The ventilator may deliver gas at a velocity to entrain ambient air and increase lung volume or lung pressure above spontaneously breathing levels to assist in work of breathing, and deliver ventilation gas in a cyclical delivery pattern synchronized with a spontaneous breathing pattern.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Joseph Cipollone, Anthony D. Wondka, Anthony Gerber, Todd Allum, Darius Eghbal, Joey Aguirre
  • Publication number: 20100252039
    Abstract: A non-invasive ventilation system may include an interface. The interface may include at least one gas delivery jet nozzle adapted to be positioned in free space and aligned to directly deliver ventilation gas into an entrance of a nose. The at least one gas delivery jet nozzle may be connected to a pressurized gas supply. The ventilation gas may entrain ambient air to elevate lung pressure, elevate lung volume, decrease the work of breathing or increase airway pressure, and wherein the ventilation gas is delivered in synchrony with phases of breathing. A support for the at least one gas delivery jet nozzle may be provided. A breath sensor may be in close proximity to the entrance of the nose. A patient may spontaneous breathe ambient air through the nose without being impeded by the interface.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: Breathe Technologies, Inc.
    Inventors: Joseph Cipollone, Gregory Kapust, Todd Allum, Anthony D. Wondka, Darius Eghbal, Joey Aguirre, Anthony Gerber
  • Publication number: 20100252040
    Abstract: A non-invasive ventilation system may include at least one outer tube with a proximal lateral end of the outer tube adapted to extend to a side of a nose. The at least one outer tube may also include a throat section. At least one coupler may be located at a distal section of the outer tube for impinging at least one nostril and positioning the at least one outer tube relative to the at least one nostril. At least one jet nozzle may be positioned within the outer tube at the proximal lateral end and in fluid communication with a pressurized gas supply. At least one opening in the distal section may be adapted to be in fluid communication with the nostril. At least one aperture in the at least one outer tube may be in fluid communication with ambient air. The at least one aperture may be in proximity to the at least one jet nozzle.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Joey Aguirre, Darius Eghbal, Anthony Gerber
  • Publication number: 20100252042
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre
  • Patent number: 7766895
    Abstract: Lung volume reduction is performed in a minimally invasive manner by isolating a lung tissue segment, optionally reducing gas flow obstructions within the segment, and aspirating the segment to cause the segment to at least partially collapse. Further optionally, external pressure may be applied on the segment to assist in complete collapse. Reduction of gas flow obstructions may be achieved in a variety of ways, including over inflation of the lung, introduction of mucolytic or dilation agents, application of vibrational energy, induction of absorption atelectasis, or the like. Optionally, diagnostic procedures on the isolated lung segment may be performed, typically using the same isolation/access catheter.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: August 3, 2010
    Assignee: Pulmonx Corporation
    Inventors: Peter P. Soltesz, Anthony D. Wondka, Rodney A. Perkins, Robert Kotmel
  • Publication number: 20100083968
    Abstract: A respiratory support ventilator apparatus is described that mechanically supports the work of respiration of a patient. The ventilator apparatus is highly portable and optionally wearable so as to promote mobility and physical activity of the patient, and to improve the overall health of the patient. The respiratory support ventilator may monitor a physical activity level and overall health status of the patient, and process this information. The information is used to track efficacy of the ventilation therapy relative to activity level and quality of life, and or to titrate or optimize the ventilation parameters to improve, maintain or optimize the physical activity level and overall health status of the patient.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 8, 2010
    Applicant: Breathe Technologies
    Inventors: Anthony D. Wondka, Angela King, Joseph Cipollone
  • Publication number: 20100071693
    Abstract: Methods, systems and devices are described for providing mechanical ventilation support of a patient using an open airway patient interface. The system includes gas delivery circuit and patient interface configurations to optimize performance and efficiency of the ventilation system. A ventilation system may include a ventilator for supplying ventilation gas. A patient interface may include distal end in communication with a patient airway, a proximal end in communication with ambient air, and an airflow channel between the distal end and the proximal end. A gas delivery circuit may be adapted to attach to the patient interface without occluding the patient interface to allow ambient air to flow from outside the patient interface to the patient airway. The ventilation gas may entrain air from ambient and from the patient airway.
    Type: Application
    Filed: August 21, 2009
    Publication date: March 25, 2010
    Applicant: Breathe Technologies
    Inventors: Todd Allum, Anthony D. Wondka, Joseph Cipollone
  • Publication number: 20090260625
    Abstract: Methods, systems and devices are described for new modes of ventilation in which specific lung areas are ventilated with an indwelling trans-tracheobronchial catheter for the purpose of improving ventilation and reducing hyperinflation in that specific lung area, and for redistributing inspired air to other healthier lung areas, for treating respiratory disorders such as COPD, ARDS, SARS, CF, and TB. Trans-Tracheobronchial Segmental Ventilation (TTSV) is performed on either a naturally breathing or a mechanical ventilated patient by placing a uniquely configured indwelling catheter into a bronchus of a poorly ventilated specific lung area and providing direct ventilation to that area. The catheter can be left in place for extended periods without clinician attendance or vigilance. Ventilation includes delivery of respiratory gases, therapeutic gases or agents and evacuation of stagnant gases, mixed gases or waste fluids.
    Type: Application
    Filed: June 29, 2009
    Publication date: October 22, 2009
    Applicant: Breathe Technologies, Inc.
    Inventor: Anthony D. Wondka
  • Publication number: 20090183739
    Abstract: A nasal ventilation interface including a manifold a nasal cushions. The manifold is configured with compound arcuate curves for optimizing fit and performance. The ventilation gas supply hose is attached to only one side of the manifold at any given time, thereby freeing up the opposite side of the user's face to enhance comfort and tolerance while sleeping.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 23, 2009
    Inventor: Anthony D. Wondka
  • Publication number: 20080216838
    Abstract: A nasal ventilation interface including a pair of tubes configured to deliver a ventilation gas. The tubes are attachable at a first end to a ventilation gas supply hose and engageable at a second end with a person's nostril. A coupler is configured to align the pair of tubes with the person's nostrils, wherein each tube has an absence of pneumatic interconnection with the other tube.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 11, 2008
    Inventor: Anthony D. Wondka
  • Patent number: 7406966
    Abstract: A nasal ventilation interface including a pair of tubes configured to deliver a ventilation gas. The tubes are attachable at a first end to a ventilation gas supply hose and engageable at a second end with a person's nostril. A coupler is configured to align the pair of tubes with the person's nostrils, wherein each tube has an absence of pneumatic interconnection with the other tube.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: August 5, 2008
    Assignee: Menlo Lifesciences, LLC
    Inventor: Anthony D. Wondka
  • Patent number: 6878141
    Abstract: Lung volume reduction is performed in a minimally invasive manner by isolating a lung tissue segment, optionally reducing gas flow obstructions within the segment, and aspirating the segment to cause the segment to at least partially collapse. Further optionally, external pressure may be applied on the segment to assist in complete collapse. Reduction of gas flow obstructions may be achieved in a variety of ways, including over inflation of the lung, introduction of mucolytic or dilation agents, application of vibrational energy, induction of absorption atelectasis, or the like. Optionally, diagnostic procedures on the isolated lung segment may be performed, typically using the same isolation/access catheter.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: April 12, 2005
    Assignee: Pulmonx
    Inventors: Rodney A. Perkins, Peter P. Soltesz, Robert Kotmel, Anthony D. Wondka