Patents by Inventor Anthony D. Wondka

Anthony D. Wondka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9132250
    Abstract: Systems and methods may include a gas source, a gas delivery circuit, and a nasal interface allowing breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. At least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end gas flow path opening. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure or lung pressure or provide ventilatory support.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: September 15, 2015
    Assignee: Breathe Technologies, Inc.
    Inventors: Todd Allum, Joey Aguirre, Joseph Cipollone, Darius Eghbal, Anthony D. Wondka
  • Patent number: 8985099
    Abstract: The invention relates to a tracheostoma spacer with a tubular support framework. The support framework can be expand from an initial state to a supporting state of increased diameter and has a fixing element at the ends. The tracheostoma spacer is intended for use as a spacer in a tracheostoma (an opening in the trachea). The invention further relates to a device for inserting a tracheostoma spacer into a tracheostoma with a cutting instrument in the form of a trocar, the tracheostoma spacer being able to be positioned on the shaft of said trocar. A cover sleeve is also provided which can be moved on the shaft over a tracheostoma spacer positioned there.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 24, 2015
    Assignee: Breathe Technologies, Inc.
    Inventors: Lutz Freitag, Anthony D. Wondka
  • Publication number: 20150065901
    Abstract: A breath analysis device is described which obtains a desired segment of one or more breaths, and analyzes that or those samples for compositional analysis. A pneumatic control system may obtain these segments homogeneously, may reduce the amount of gases included from other segments of the breath, and may reduce mixing with other segments once obtained. These pneumatic control systems can be used for on-board compositional analysis, or for modular or off-board compositional analysis.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventors: Anish BHATNAGAR, Anthony D. WONDKA
  • Publication number: 20150065900
    Abstract: A breath parameter measuring device is described which takes into account breathing patterns which historically have been incompatible with accurate measurements. In particular, during fast breathing patterns, the sensor performing the measurement may not be able to respond quickly enough to provide the true reading. The disclosure may be useful for example in the case of neonatal breath carbon dioxide measurements.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventors: Anthony D. WONDKA, Anish BHATNAGAR, Pedro E. DE LA SERNA
  • Publication number: 20150065902
    Abstract: A breath analysis device is described which minimizes mixing of gases between one section of a breath and another section of breath. In particular for example, when sampling and analyzing the end-tidal section of exhaled gas, the system may avoid mixing that can occur inside the device, between the end-tidal sample and the gases before and after the end-tidal sample. The system accomplishes this with an ultra-low uniform cross section fluid pathway, which includes componentry with ultra-low dead space.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventors: Pedro E. DE LA SERNA, Anthony D. WONDKA, Robert BLANTE
  • Patent number: 8955518
    Abstract: Methods, systems and devices are described for new modes of ventilation in which specific lung areas are ventilated with an indwelling trans-tracheobronchial catheter for the purpose of improving ventilation and reducing hyperinflation in that specific lung area, and for redirecting inspired air to other healthier lung areas. Trans-tracheobronchial Segmental Ventilation (TTSV) is performed on either a naturally breathing or a mechanical ventilated, patient by placing a uniquely configured indwelling catheter into a bronchus of a poorly ventilated specific lung area and providing direct ventilation to that area. Typically the catheter's distal tip is anchored without occluding the bronchus. TTSV is optionally performed by insufflation only of the area, or by the application of vacuum to the area, can include elevating or reducing the pressure in the targeted area to facilitate stagnant gas removal, or can include blocking the area to divert inspired gas to better functioning areas.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: February 17, 2015
    Assignee: Breathe Technologies, Inc.
    Inventor: Anthony D. Wondka
  • Patent number: 8939152
    Abstract: Systems and methods are provided for humidifying ventilation gas. Systems and methods may include a nasal interface apparatus for receiving ventilation gas from gas delivery tubing and for humidifying ventilation gas. The nasal interface apparatus may have one or more channels within the nasal interface to deliver gas from a gas delivery circuit to a patient's nose; one or more structures in fluid communication with the one or more channels to direct ventilation gas to the patient's nose; and a hygroscopic material within the nasal interface in the flow path of the ventilation gas.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: January 27, 2015
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, George A. Kassanis, Todd W. Allum, Enrico Brambilla
  • Publication number: 20140228699
    Abstract: Methods and systems are described to obtain and analyze one or more gas samples from the breath of a person, and organizing the samples in a sample registry for subsequent analysis. This technique solves the various problems that are associated with targeting an individual breath for analysis, and allows for additional versatility and options in the analysis process.
    Type: Application
    Filed: February 12, 2014
    Publication date: August 14, 2014
    Inventors: Elvir CAUSEVIC, Anthony D. WONDKA, Anish BHATNAGAR
  • Patent number: 8776793
    Abstract: Improved methods and devices are described for sensing the respiration pattern of a patient and controlling ventilator functions, particularly for use in an open ventilation system. A ventilation and breath sensing apparatus may include a ventilation gas delivery circuit and a ventilation tube coupled to the ventilation gas delivery circuit. A plurality of pressure sensing elements may be separated by a distance and may produce independent signals. The signals may be used to detect pressure differentials between the plurality of pressure sensing elements. Sensing ports may be located in an airway, and connected to transducers that are valved to optimize sensitivity and overpressure protection. Airway pressure and flow can both be obtained and used to optimize ventilator synchronization and therapy.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 15, 2014
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Robert F. Bryan, Mark McCall, Cuong Q. Tran
  • Publication number: 20140194703
    Abstract: Methods and systems are described to obtain and analyze a gas sample from a desired section of the breath of a person, while accounting for erratic, episodic or otherwise challenging breathing patterns that may otherwise make the capturing of a gas sample from the desired section of breath difficult. These techniques may provide more reliable, accurate and adequate samples of gas such as end-tidal gas, and ultimately an accurate analysis of the sample captured.
    Type: Application
    Filed: January 8, 2014
    Publication date: July 10, 2014
    Applicant: CAPNIA, INC.
    Inventors: Anthony D. WONDKA, Anish BHATNAGAR, Scott J. GILBERT
  • Patent number: 8770193
    Abstract: Improved methods and devices are described for sensing the respiration pattern of a patient and controlling ventilator functions, particularly for use in an open ventilation system. An apparatus for sensing respiration and synchronizing a ventilator to the respiration of a patient is described. The apparatus may include a plurality of thermal breath sensors. At least one of the plurality of thermal breath sensors may be a heated thermal breath sensor.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 8, 2014
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Robert F. Bryan, Lutz Freitag, Mark McCall, Cuong Q. Tran
  • Publication number: 20140182583
    Abstract: Systems and methods are provided for humidifying ventilation gas. Systems and methods may include a nasal interface apparatus for receiving ventilation gas from gas delivery tubing and for humidifying ventilation gas. The nasal interface apparatus may have one or more channels within the nasal interface to deliver gas from a gas delivery circuit to a patient's nose; one or more structures in fluid communication with the one or more channels to direct ventilation gas to the patient's nose; and a hygroscopic material within the nasal interface in the flow path of the ventilation gas.
    Type: Application
    Filed: October 29, 2013
    Publication date: July 3, 2014
    Applicant: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, George A. Kassanis, Todd W. Allum, Enrico Brambilla
  • Patent number: 8677999
    Abstract: Methods, systems and devices are described for providing mechanical ventilation support of a patient using an open airway patient interface. The system includes gas delivery circuit and patient interface configurations to optimize performance and efficiency of the ventilation system. A ventilation system may include a ventilator for supplying ventilation gas. A patient interface may include distal end in communication with a patient airway, a proximal end in communication with ambient air, and an airflow channel between the distal end and the proximal end. A gas delivery circuit may be adapted to attach to the patient interface without occluding the patient interface to allow ambient air to flow from outside the patient interface to the patient airway. The ventilation gas may entrain air from ambient and from the patient airway.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: March 25, 2014
    Assignee: Breathe Technologies, Inc.
    Inventors: Todd A. Allum, Anthony D. Wondka, Joseph Cipollone, Lutz Freitag
  • Patent number: 8631797
    Abstract: Spontaneous respiration is detected by sensors. An additional amount of oxygen is administered to the lungs via a jet gas current at the end of an inhalation procedure. Breathing volume, absorption of oxygen during inhalation, and clearance of carbon dioxide during exhalation are improved. If required, the exhalation procedure of the patient can be arrested or slowed by a countercurrent to avoid a collapse of the respiration paths. An apparatus including an oxygen pump can be connected to an oxygen source and includes a tracheal prosthesis that can be connected via a catheter. The respiration detections sensors are connected to a control unit for activating the oxygen pump. The tracheal prosthesis includes a tubular support body with a connection for the catheter, and the sensors are associated with the support body. The tracheal prosthesis and jet catheter are dimensioned so the patient can freely breathe and speak without restriction.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: January 21, 2014
    Assignee: Breathe Technologies, Inc.
    Inventors: Lutz Freitag, Gregory Kapust, Anthony D. Wondka
  • Publication number: 20130312752
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: April 2, 2010
    Publication date: November 28, 2013
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 8573219
    Abstract: A nasal ventilation interface including a pair of tubes configured to deliver a ventilation gas. The tubes are attachable at a first end to a ventilation gas supply hose and engageable at a second end with a person's nostril. A coupler is configured to align the pair of tubes with the person's nostrils, wherein each tube has an absence of pneumatic interconnection with the other tube.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: November 5, 2013
    Assignee: Breathe Technologies, Inc.
    Inventor: Anthony D. Wondka
  • Publication number: 20130255683
    Abstract: A system for providing ventilation support to a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle at the distal end of the gas delivery circuit; and at least one spontaneous respiration sensor for detecting respiration in communication with the control unit. The system may be open to ambient. The control unit may receive signals from the at least one spontaneous respiration sensor and determine gas delivery requirements. The ventilator may deliver gas at a velocity to entrain ambient air and increase lung volume or lung pressure above spontaneously breathing levels to assist in work of breathing, and deliver ventilation gas in a cyclical delivery pattern synchronized with a spontaneous breathing pattern.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 3, 2013
    Inventors: Gregory Kapust, Joseph Cipollone, Anthony D. Wondka, Anthony Gerber, Todd Allum, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Publication number: 20130092165
    Abstract: A nasal cannula ventilation system is described for treating lung disease or for exercise conditioning, incorporating a Venturi system. The ventilation cannula comprises unique positioning features to positively locate a gas delivery nozzle in an optimal location to optimize Venturi performance, patient comfort and fitment to the patient. The cannula is low profile, making it as realistic to wear and use as a standard oxygen cannula, and is simple rending the cost reasonable. The ventilation cannula uses a simple low cost ventilator as a gas delivery control system which is compatible with existing gas sources. The system is used (1) during stationary use to unrest the respiratory muscles to increase tolerance to activity after a treatment session, or (2) to enable activity within a distance from a stationary gas source, (3) during ambulatory use using a portable gas source to enable mobility, and (4) for enhanced fitness conditioning.
    Type: Application
    Filed: September 26, 2012
    Publication date: April 18, 2013
    Inventor: Anthony D. Wondka
  • Publication number: 20120138050
    Abstract: Systems and methods are provided for humidifying ventilation gas. Systems and methods may include a nasal interface apparatus for receiving ventilation gas from gas delivery tubing and for humidifying ventilation gas. The nasal interface apparatus may have one or more channels within the nasal interface to deliver gas from a gas delivery circuit to a patient's nose; one or more structures in fluid communication with the one or more channels to direct ventilation gas to the patient's nose; and a hygroscopic material within the nasal interface in the flow path of the ventilation gas.
    Type: Application
    Filed: September 30, 2011
    Publication date: June 7, 2012
    Applicant: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Joseph Cipollone, George A. Kassanis, Todd W. Allum, Enrico Brambilla
  • Patent number: D662200
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: June 19, 2012
    Assignee: Breathe Technologies, Inc.
    Inventors: Darius Eghbal, Jose J. Aguirre, Jr., Todd W. Allum, Joseph Cipollone, Anthony D. Wondka