Patents by Inventor Anup Bhalla

Anup Bhalla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10535764
    Abstract: Fabricating a semiconductor device includes: forming a first gate trench and a second gate trench in an epitaxial layer overlaying a semiconductor substrate; depositing gate material in the first gate trench to form a first gate and depositing gate material in the second gate trench to form a second gate; forming a body; forming a source; forming an active region contact trench that extends through the source and the body, and a gate contact trench within the second gate; forming an island region under the active region contact trench and disconnected from the body, the island region having an opposite polarity as the epitaxial layer; and disposing a first electrode within the active region contact trench and a second electrode within the gate contact trench.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: January 14, 2020
    Assignee: Alpha and Omega Semiconductor Limited
    Inventors: Anup Bhalla, Xiaobin Wang, Ji Pan, Sung-Po Wei
  • Patent number: 10522666
    Abstract: A method for fabricating an anode-shorted field stop insulated gate bipolar transistor (IGBT) comprises selectively forming first and second semiconductor implant regions of opposite conductivity types. A field stop layer of a second conductivity type can be grown onto or implanted into the substrate. An epitaxial layer can be grown on the substrate or on the field stop layer. One or more insulated gate bipolar transistors (IGBT) component cells are formed within the epitaxial layer.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: December 31, 2019
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Anup Bhalla, Madhur Bobde, Yongping Ding, Xiaotian Zhang, Yueh-Se Ho
  • Patent number: 10468526
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate. The semiconductor power device includes trenched gates each having a stick-up gate segment extended above a top surface of the semiconductor substrate surrounded by sidewall spacers. The semiconductor power device further includes slots opened aligned with the sidewall spacers substantially parallel to the trenched gates. The stick-up gate segment further includes a cap composed of an insulation material surrounded by the sidewall spacers. A layer of barrier metal covers a top surface of the cap and over the sidewall spacers and extends above a top surface of the slots. The slots are filled with a gate material same as the gate segment for functioning as additional gate electrodes for providing a depletion layer extends toward the trenched gates whereby a drift region between the slots and the trenched gate is fully depleted at a gate-to-drain voltage Vgs=0 volt.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: November 5, 2019
    Assignee: Alpha and Omega Semiconductor, Inc.
    Inventors: François Hébert, Madhur Bobde, Anup Bhalla
  • Publication number: 20190333994
    Abstract: Semiconductor devices includes a thin epitaxial layer (nanotube) formed on sidewalls of mesas formed in a semiconductor layer. In one embodiment, a semiconductor device includes a first epitaxial layer and a second epitaxial layer formed on mesas of the semiconductor layer. The thicknesses and doping concentrations of the first and second epitaxial layers and the mesa are selected to achieve charge balance in operation. In another embodiment, the semiconductor body is lightly doped and the thicknesses and doping concentrations of the first and second epitaxial layers are selected to achieve charge balance in operation.
    Type: Application
    Filed: July 12, 2019
    Publication date: October 31, 2019
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 10446695
    Abstract: A JFET having vertical and horizontal channel elements may be made from a semiconductor material such as silicon carbide using a first mask for multiple implantations to form a horizontal planar JFET region comprising a lower gate, a horizontal channel, and an upper gate, all above a drift region resting on a drain substrate region, such that the gates and horizontal channel are self-aligned with the same outer size and outer shape in plan view. A second mask may be used to create a vertical channel region abutting the horizontal channel region. The horizontal channel and vertical channel may each have multiple layers with varying doping concentrations. Angled implantations may use through the first mask to implant portions of the vertical channel regions. The window of the second mask may partially overlap the horizontal JFET region to insure abutment of the vertical and horizontal channel regions.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: October 15, 2019
    Assignee: United Silicone Carbide, Inc.
    Inventors: Anup Bhalla, Zhongda Li
  • Patent number: 10439058
    Abstract: A heterostructure field effect transistor (HFET) gallium nitride (GaN) semiconductor power device comprises a hetero junction structure comprises a first semiconductor layer interfacing a second semiconductor layer of two different band gaps thus generating an interface layer as a two-dimensional electron gas (2DEG) layer. The power device further comprises a source electrode and a drain electrode disposed on two opposite sides of a gate electrode disposed on top of the hetero junction structure for controlling a current flow between the source and drain electrodes in the 2DEG layer.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: October 8, 2019
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Tinggang Zhu
  • Publication number: 20190296157
    Abstract: A nitride-based Schottky diode includes a nitride-based semiconductor body, a first metal layer forming the anode electrode, a cathode electrode in electrical contact with the nitride-based semiconductor body, and a termination structure including a guard ring and a dielectric field plate. In one embodiment, the cathode electrode is formed on the front side of the nitride-based semiconductor body, in an area away from the anode electrode and the termination structure. In another embodiment, the dielectric field plate includes a first dielectric layer and a recessed second dielectric layer. In another embodiment, the dielectric field plate and the nitride-based epitaxial layer are formed with a slant profile at a side facing the Schottky junction of the Schottky diode. In another embodiment, the dielectric field plate is formed on a top surface of the nitride-based epitaxial layer and recessed from an end of the nitride-based epitaxial layer near the Schottky junction.
    Type: Application
    Filed: April 29, 2019
    Publication date: September 26, 2019
    Inventors: TingGang Zhu, Anup Bhalla, Ping Huang, Yueh-Se Ho
  • Patent number: 10396215
    Abstract: Trench JFETs may be created by etching trenches into the topside of a substrate of a first doping type to form mesas. The substrate is made up of a backside drain layer, a middle drift layer, and topside source layer. The etching goes through the source layer and partly into the drift layer. Gate regions are formed on the sides and bottoms of the trenches using doping of a second type. Vertical channel regions are formed behind the vertical gate segments via angled implantation using a doping of the first kind, providing improved threshold voltage control. Optionally the substrate may include a lightly doped channel layer between the drift and source layers, such that the mesas include a lightly doped channel region that more strongly contrasts with the implanted vertical channel regions.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 27, 2019
    Assignee: United Silicon Carbide, Inc.
    Inventors: Anup Bhalla, Peter Alexandrov
  • Patent number: 10396158
    Abstract: Semiconductor devices are formed using a pair of thin epitaxial layers (nanotubes) of opposite conductivity type formed on sidewalls of dielectric-filled trenches. In one embodiment, a termination structure is formed in the termination area and includes a first termination cell formed in the termination area at an interface to the active area, the termination cell being formed in a mesa of the first semiconductor layer and having a first width; and an end termination cell being formed next to the first termination cell in the termination area, the end termination cell being formed in an end mesa of the first semiconductor layer and having a second width greater than the first width.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: August 27, 2019
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 10367098
    Abstract: A vertical JFET made by a process using a limited number of masks. A first mask is used to form mesas and trenches in active cell and termination regions simultaneously. A mask-less self-aligned process is used to form silicide source and gate contacts. A second mask is used to open windows to the contacts. A third mask is used to pattern overlay metallization. An optional fourth mask is used to pattern passivation. Optionally the channel may be doped via angled implantation, and the width of the trenches and mesas in the active cell region may be varied from those in the termination region.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: July 30, 2019
    Assignee: United Silicon Carbide, Inc.
    Inventors: Zhongda Li, Anup Bhalla
  • Patent number: 10367099
    Abstract: A vertical JFET with a ladder termination may be made by a method using a limited number of masks. A first mask is used to form mesas and trenches in active cell and termination regions simultaneously. A mask-less self-aligned process is used to form silicide source and gate contacts. A second mask is used to open windows to the contacts. A third mask is used to pattern overlay metallization. An optional fourth mask is used to pattern passivation. Optionally the channel may be doped via angled implantation, and the width of the trenches and mesas in the active cell region may be varied from those in the termination region.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: July 30, 2019
    Assignee: United Silicon Carbide, Inc.
    Inventors: Zhongda Li, Anup Bhalla
  • Patent number: 10333006
    Abstract: A method for forming a nitride-based Schottky diode includes forming a nitride-based epitaxial layer on a front side of a nitride-based semiconductor body; forming a first dielectric layer on the nitride-based epitaxial layer; etching the first dielectric layer and the nitride-based epitaxial layer to the nitride-based semiconductor body to define an opening for an anode electrode of the nitride-based Schottky diode and to form an array of islands of the nitride-based epitaxial layer in the opening, the first dielectric layer having an end that is recessed from an end of the nitride-based epitaxial layer near the opening. In another embodiment, the first dielectric layer and the nitride-based epitaxial layer have a slant profile at a side facing the opening for the anode electrode.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: June 25, 2019
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: TingGang Zhu, Anup Bhalla, Ping Huang, Yueh-Se Ho
  • Publication number: 20190115427
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 18, 2019
    Inventors: Hamza Yilmaz, Daniel Ng, Lingping Guan, Anup Bhalla, Wilson Ma, Moses Ho, John Chen
  • Publication number: 20190088761
    Abstract: A lateral super junction JFET is formed from stacked alternating P type and N type semiconductor layers over a P-epi layer supported on an N+ substrate. An N+ drain column extends down through the super junction structure and the P-epi to connect to the N+ substrate to make the device a bottom drain device. N+ source column and P+ gate column extend through the super junction but stop at the P-epi layer. A gate-drain avalanche clamp diode is formed from the bottom the P+ gate column through the P-epi to the N+ drain substrate.
    Type: Application
    Filed: October 5, 2018
    Publication date: March 21, 2019
    Inventors: Madhur Bobde, Lingpeng Guann, Anup Bhalla, Hamza Yilmaz
  • Publication number: 20190043947
    Abstract: Semiconductor devices are formed using a pair of thin epitaxial layers (nanotubes) of opposite conductivity type formed on sidewalls of dielectric-filled trenches. In one embodiment, a termination structure is formed in the termination area and includes a first termination cell formed in the termination area at an interface to the active area, the termination cell being formed in a mesa of the first semiconductor layer and having a first width; and an end termination cell being formed next to the first termination cell in the termination area, the end termination cell being formed in an end mesa of the first semiconductor layer and having a second width greater than the first width.
    Type: Application
    Filed: July 26, 2018
    Publication date: February 7, 2019
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 10192982
    Abstract: A semiconductor power device may include a lightly doped layer formed on a heavily doped layer. One or more devices are formed in the lightly doped layer. Each device includes a body region, a source region, and one or more gate electrodes formed in corresponding trenches in the lightly doped region. Each trench has a first dimension (depth), a a second dimension (width) and a third dimension (length). The body region is of opposite conductivity type to the lightly and heavily doped layers. An opening is formed between first and second trenches through an upper portion of the source region and a body contact region to the body region. A deep implant region of the second conductivity type is formed in the lightly doped layer below the body region. The deep implant region is vertically aligned to the opening and spaced away from a bottom of the opening.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: January 29, 2019
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Hamza Yilmaz, Daniel Ng, Daniel Calafut, Madhur Bobde, Anup Bhalla, Ji Pan, Yeeheng Lee, Jongoh Kim
  • Patent number: 10177221
    Abstract: This invention discloses a method for manufacturing a semiconductor power device in a semiconductor substrate comprises an active cell area and a termination area.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: January 8, 2019
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Anup Bhalla, Madhur Bobde, Tinggang Zhu
  • Publication number: 20180342626
    Abstract: A vertical JFET with a ladder termination may be made by a method using a limited number of masks. A first mask is used to form mesas and trenches in active cell and termination regions simultaneously. A mask-less self-aligned process is used to form silicide source and gate contacts. A second mask is used to open windows to the contacts. A third mask is used to pattern overlay metallization. An optional fourth mask is used to pattern passivation. Optionally the channel may be doped via angled implantation, and the width of the trenches and mesas in the active cell region may be varied from those in the termination region.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 29, 2018
    Inventors: Zhongda Li, Anup Bhalla
  • Publication number: 20180337274
    Abstract: Fabricating a semiconductor device includes: forming a first gate trench and a second gate trench in an epitaxial layer overlaying a semiconductor substrate; depositing gate material in the first gate trench to form a first gate and depositing gate material in the second gate trench to form a second gate; forming a body; forming a source; forming an active region contact trench that extends through the source and the body, and a gate contact trench within the second gate; forming an island region under the active region contact trench and disconnected from the body, the island region having an opposite polarity as the epitaxial layer; and disposing a first electrode within the active region contact trench and a second electrode within the gate contact trench.
    Type: Application
    Filed: July 31, 2018
    Publication date: November 22, 2018
    Inventors: Anup Bhalla, Xiaobin Wang, Ji Pan, Sung-Po Wei
  • Publication number: 20180323315
    Abstract: A method for forming a nitride-based Schottky diode includes forming a nitride-based epitaxial layer on a front side of a nitride-based semiconductor body; forming a first dielectric layer on the nitride-based epitaxial layer; etching the first dielectric layer and the nitride-based epitaxial layer to the nitride-based semiconductor body to define an opening for an anode electrode of the nitride-based Schottky diode and to form an array of islands of the nitride-based epitaxial layer in the opening, the first dielectric layer having an end that is recessed from an end of the nitride-based epitaxial layer near the opening. In another embodiment, the first dielectric layer and the nitride-based epitaxial layer have a slant profile at a side facing the opening for the anode electrode.
    Type: Application
    Filed: June 26, 2018
    Publication date: November 8, 2018
    Inventors: TingGang Zhu, Anup Bhalla, Ping Huang, Yueh-Se Ho