Patents by Inventor Anurag Kumar

Anurag Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230252822
    Abstract: A smart glass for incorporating speech recognition in an immersive reality environment is provided. The smart glass includes an eyepiece mounted on a frame including a transparent optical component to provide a user a view of a scene in a real world. The smart glass also includes a first camera configured to capture an image of a hand gesture from an interlocutor in the real world, and a processor configured to recognize, in the image of the hand gesture, a textual meaning. A system including memories storing instructions and processors to execute the instructions to perform methods for use of the above smart glass, and the methods, are also provided.
    Type: Application
    Filed: February 2, 2023
    Publication date: August 10, 2023
    Inventors: Johana Gabriela Coyoc Escudero, Scott Phillip Selfon, Simon Porter, Christi Miller, Yao Ding, Jonathan Y. Lee, Gregory Sarkis-Kelly, Brett Alden Lavalla, FNU Anurag Kumar
  • Patent number: 11703562
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with sensor output segmentation are provided. For example, sensor data can be accessed. The sensor data can include sensor data returns representative of an environment detected by a sensor across the sensor's field of view. Each sensor data return can be associated with a respective bin of a plurality of bins corresponding to the field of view of the sensor. Each bin can correspond to a different portion of the sensor's field of view. Channels can be generated for each of the plurality of bins and can include data indicative of a range and an azimuth associated with a sensor data return associated with each bin. Furthermore, a semantic segment of a portion of the sensor data can be generated by inputting the channels for each bin into a machine-learned segmentation model trained to generate an output including the semantic segment.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: July 18, 2023
    Assignee: UATC, LLC
    Inventors: Ankit Laddha, Carlos Vallespi-Gonzalez, Duncan Blake Barber, Jacob White, Anurag Kumar
  • Patent number: 11629058
    Abstract: The present disclosure relates to a method for producing a metal carbide, where the method includes thermally treating a molecular precursor in an oxygen-free environment, such that the treating produces the metal carbide and the molecular precursor includes where M is the metal of the metal carbide, N* includes nitrogen or a nitrogen-containing functional group, and x is between zero and six, inclusively.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: April 18, 2023
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Frederick G. Baddour, Anurag Kumar, Kurt Michael Van Allsburg, Daniel Ruddy, Susan E. Habas, Andrew Royappa, Brittney E. Petel, Claire Townsend Nimlos
  • Publication number: 20230067032
    Abstract: This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 2, 2023
    Applicant: Lyten, Inc.
    Inventors: Jeffrey Bell, You Li, Jesse Baucom, John Thorne, Qianwen Huang, Anurag Kumar, Jerzy Gazda, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Publication number: 20230031884
    Abstract: A lithium-sulfur battery including an anode, a cathode, a separator, and an electrolyte dispersed throughout the lithium-sulfur battery is provided. The anode may output lithium ions. The cathode may be positioned opposite to the anode and have an overall porosity as defined by multiple non-hollow carbon spherical (NHCS) particles joined together to form tubular NHCS particle agglomerate. Pores may be associated with the overall porosity of the cathode and interspersed uniformly throughout the NHCS particles. In some aspects, each pore having a diameter between 1 nm and 10 nm; and each tubular NCHS agglomerate has a length between 5 micrometers (?m) and 35 ?m. Interconnected channels defined in shape by the NHCS particles may be joined to each other and the pores, where some interconnected channels may be pre-loaded with an elemental sulfur and retain polysulfides (PS). Retention of the polysulfides may be based on some NHCS particles.
    Type: Application
    Filed: January 18, 2022
    Publication date: February 2, 2023
    Applicant: LytEn, Inc.
    Inventors: Ratnakumar Bugga, Bruce Lanning, Michael W. Stowell, Jerzy Gazda, Jeffrey Bell, Anurag Kumar
  • Publication number: 20230024954
    Abstract: A cathode may be formed with one or more regions positioned adjacent to one another. At least one region may include particles, where each particle includes carbon fragments and a deformable perimeter that may coalesce with adjacent particles. At least one region may include aggregates, where each aggregate may be formed of several particles joined to one another. Pores may be interspersed throughout the aggregates. At least one region may include agglomerates, where each agglomerate may be formed of a multitude of the aggregates joined to one other. At least one region further comprises a selectively permeable shell configured to form a separated liquid phase on the selectively permeable shell. The cathode may include at least one electrically-conductive region. At least one region has an electrical conductivity in an approximate range between 500 S/m to 20,000 S/m at a pressure of 12,000 pounds per square in (psi).
    Type: Application
    Filed: March 14, 2022
    Publication date: January 26, 2023
    Applicant: LytEn, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Jerzy Gazda, Jeffrey Bell, Anurag Kumar
  • Patent number: 11508554
    Abstract: Embodiments described herein are applicable for use in all types of plasma assisted or plasma enhanced processing chambers and also for methods of plasma assisted or plasma enhanced processing of a substrate. More specifically, embodiments of this disclosure include a broadband filter assembly, also referred to herein as a filter assembly, that is configured to reduce and/or prevent RF leakage currents from being transferred from one or more RF driven components to a ground through other electrical components that are directly or indirectly electrically coupled to the RF driven components and ground with high input impedance (low current loss) making it compatible with shaped DC pulse bias applications.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Anurag Kumar Mishra, James Rogers, Leonid Dorf, Rajinder Dhindsa, Olivier Luere
  • Patent number: 11508966
    Abstract: This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 22, 2022
    Assignee: Lyten, Inc.
    Inventors: Jeffrey Bell, You Li, Jesse Baucom, John Thorne, Qianwen Huang, Anurag Kumar, Jerzy Gazda, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Patent number: 11489161
    Abstract: A composition of matter suitable for incorporation into a battery electrode is disclosed. In some implementations, the composition of matter may include pores that may be defined in size or shape by several carbonaceous particles. Each of the particles may have multiple regions such that adjacent regions are separated from each other by some of the pores. Deformable regions may be distributed throughout a perimeter of each of the particles, for example, to accommodate coalescence of multiple adjacent particles. The composition of matter may also include a plurality of aggregates and a plurality of agglomerates, where each aggregate includes a multitude of the particles joined together, and each agglomerate includes a multitude of the aggregates joined together.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: November 1, 2022
    Assignee: Lyten, Inc.
    Inventors: Anurag Kumar, Jeffrey Bell, Qianwen Huang, Jesse Baucom, You Li, John Thorne, Karel Vanheusden, Elena Rogojina, Jerzy Gazda
  • Patent number: 11481350
    Abstract: Network chip utility is improved using multi-core architectures with auxiliary wiring between cores to permit cores to utilize components from otherwise inactive cores. The architectures permit, among other advantages, the re-purposing of functional components that reside in defective or otherwise non-functional cores. For instance, a four-core network chip with certain defects in three or even four cores could still, through operation of the techniques described herein, be utilized in a two or even three-core capacity. In an embodiment, the auxiliary wiring may be used to redirect data from a Serializer/Deserializer (“SerDes”) block of a first core to packet-switching logic on a second core, and vice-versa. In an embodiment, the auxiliary wiring may be utilized to circumvent defective components in the packet-switching logic itself. In an embodiment, a core may utilize buffer memories, forwarding tables, or other resources from other cores instead of or in addition to its own.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: October 25, 2022
    Assignee: Innovium, Inc.
    Inventors: Srinivas Gangam, Ajit Kumar Jain, Anurag Kumar Jain, Avinash Gyanendra Mani, Mohammad Kamel Issa
  • Patent number: 11461181
    Abstract: Methods and systems for protecting a multitenant database system with multiple tenant databases are provided. One method includes accessing, by a processor, a backup of a source container database of a multitenant database system, the source container database hosting a plurality of tenant databases; generating, by the processor, a clone of the source container database from the backup, the clone of the source container database including clones of the plurality of tenant databases; exporting, by the processor, configuration information of a clone of a first tenant database from the clone of the source container database to a target container database; importing, by the processor, the clone of the first tenant database into the target container database; and removing, by the processor, the clone of the first tenant database from the cloned source container database, while retaining data files associated with the first tenant database.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: October 4, 2022
    Assignee: NETAPP, INC.
    Inventors: Uttam Singh, Vasantha Sadananda Prabhu, Ebin Varghese Kadavy, Yogesh Basavani Suresh, Anurag Kumar, Shivananda Kn
  • Publication number: 20220245032
    Abstract: Methods and systems for protecting a multitenant database system with multiple tenant databases are provided. One method includes accessing, by a processor, a backup of a source container database of a multitenant database system, the source container database hosting a plurality of tenant databases; generating, by the processor, a clone of the source container database from the backup, the clone of the source container database including clones of the plurality of tenant databases; exporting, by the processor, configuration information of a clone of a first tenant database from the clone of the source container database to a target container database; importing, by the processor, the clone of the first tenant database into the target container database; and removing, by the processor, the clone of the first tenant database from the cloned source container database, while retaining data files associated with the first tenant database.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 4, 2022
    Applicant: NETAPP, INC.
    Inventors: Uttam Singh, Vasantha Sadananda Prabhu, Ebin Varghese Kadavy, Yogesh Basavani Suresh, Anurag Kumar, Shivananda Kn
  • Patent number: 11404692
    Abstract: A cathode may be formed form a first porous carbonaceous region and a second porous carbonaceous region positioned adjacent to the first porous carbonaceous region. Each region may have a corresponding concentration level of porous carbonaceous materials. Specifically, each region may include pores and non-tri-zone particles and tri-zone particles. In one implementation, each tri-zone particle may include carbon fragments intertwined with each other and separated from one another by mesopores. Each tri-zone particle may also include a deformable perimeter that may coalesce with adjacent non-tri-zone particles or tri-zone particles. In some aspects, the tri-zone particles may include aggregates formed by several tri-zone particles joined together. In some aspects, mesopores may be interspersed throughout the aggregates. Each tri-zone particle may also include agglomerates, where each agglomerate includes a multitude of the aggregates joined together.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: August 2, 2022
    Assignee: LytEn, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Jerzy Gazda, Jeffrey Bell, Anurag Kumar
  • Patent number: 11398622
    Abstract: A battery is disclosed that includes an anode, a graded interface layer disposed on the anode, a cathode positioned opposite to the anode, an electrolyte, and a separator. The anode may output lithium ions during cycling of the battery. A graded interface layer may be disposed on the anode and include a tin fluoride layer. A tin-lithium alloy region may form between the tin fluoride layer and the anode. The tin-lithium alloy region may produce a lithium fluoride uniformly dispersed between the anode and the tin fluoride layer during operational cycling of the battery. The electrolyte may disperse throughout the cathode and the anode. The separator may be positioned between the anode and cathode. In some aspects, the battery may also include lithium electrodeposited on one or more exposed surfaces of the anode.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: July 26, 2022
    Assignee: Lyten, Inc.
    Inventors: Jerzy Gazda, Qianwen Huang, Elena Rogojina, You Li, Jesse Baucom, Jeffrey Bell, John Thorne, Anurag Kumar, Jingning Shan
  • Publication number: 20220232342
    Abstract: Embodiments of the present disclosure relate to an audio system for artificial reality applications. One or more transducers of the audio system output, in accordance with audio instructions, one or more ultrasonic pressure waves simulating a virtual audio source near an ear of a user of the headset. A controller of the audio system generates the audio instructions such that the one or more ultrasonic pressure waves form at least a portion of audio content for presentation to the user. An array of microphones of the audio system detects audio signals in a local area. A deep neural network of the audio system processes the detected audio signals to generate enhanced audio content, and the one or more transducers present the enhanced audio content to a user.
    Type: Application
    Filed: April 6, 2022
    Publication date: July 21, 2022
    Inventors: Ashutosh Pandey, Buye Xu, FNU Anurag Kumar, Jacob Ryan Donley, Paul Thomas Calamia, DeLiang Wang, Chuming Zhao, Nils Thomas Fritiof Lunner, Antonio John Miller, Manoel Francisco Soares Neto
  • Patent number: 11309545
    Abstract: A composition of matter may include pores and non-tri-zone particles and tri-zone particles. In one implementation, each tri-zone particle may include carbon fragments intertwined with each other and separated from one another by mesopores. Each tri-zone particle may also include a deformable perimeter that may coalesce with adjacent non-tri-zone particles or tri-zone particles. In some aspects, the tri-zone particles may include aggregates formed by a multitude of the tri-zone particles joined together. In some aspects, mesopores may be interspersed throughout the aggregates. Each tri-zone particle may also include agglomerates, where each agglomerate includes a multitude of the aggregates joined together. In some aspects, macropores may be interspersed throughout the aggregates.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: April 19, 2022
    Assignee: LytEn, Inc.
    Inventors: Anurag Kumar, Jeffrey Bell, Qianwen Huang, Jesse Baucom, You Li, John Thorne, Karel Vanheusden, Elena Rogojina, Jerzy Gazda
  • Patent number: 11284500
    Abstract: Embodiments of this disclosure describe an electrode biasing scheme that enables maintaining a nearly constant sheath voltage and thus creating a mono-energetic IEDF at the surface of the substrate that consequently enables a precise control over the shape of IEDF and the profile of the features formed in the surface of the substrate.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: March 22, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Olivier Luere, Rajinder Dhindsa, James Rogers, Sunil Srinivasan, Anurag Kumar Mishra
  • Publication number: 20210367241
    Abstract: A composition of matter may include pores and non-tri-zone particles and tri-zone particles. In one implementation, each tri-zone particle may include carbon fragments intertwined with each other and separated from one another by mesopores. Each tri-zone particle may also include a deformable perimeter that may coalesce with adjacent non-tri-zone particles or tri-zone particles. In some aspects, the tri-zone particles may include aggregates formed by a multitude of the tri-zone particles joined together. In some aspects, mesopores may be interspersed throughout the aggregates. Each tri-zone particle may also include agglomerates, where each agglomerate includes a multitude of the aggregates joined together. In some aspects, macropores may be interspersed throughout the aggregates.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 25, 2021
    Applicant: Lyten, Inc.
    Inventors: Anurag Kumar, Jeffrey Bell, Qianwen Huang, Jesse Baucom, You Li, John Thorne, Karel Vanheusden, Elena Rogojina, Jerzy Gazda
  • Publication number: 20210359308
    Abstract: A battery is disclosed that includes an anode, a cathode positioned opposite to the anode, a protective sheath disposed on the cathode, a separator, and an electrolyte. The anode may be arranged in a lattice configuration and include carbonaceous materials. The separator may be disposed between the anode and cathode. The protective sheath may include a tri-functional epoxy compound and a di-amine oligomer-based compound that can chemically react with each other. In this way, the protective sheath may prevent polysulfide migration within the battery based on chemical binding between the protective sheath and one or more lithium-containing polysulfide intermediates. The electrolyte may disperse within the cathode and contact the anode. In one implementation, a polymeric network may be deposited over one or more exposed surfaces of the anode. The polymeric network may have fluorinated polymer chains grafted with carbonaceous materials and be cross-linked with each another.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Applicant: Lyten, Inc.
    Inventors: Qianwen Huang, Elena Rogojina, Jerzy Gazda, Anurag Kumar
  • Publication number: 20210359289
    Abstract: A battery is disclosed that includes an anode, a graded interface layer disposed on the anode, a cathode positioned opposite to the anode, an electrolyte, and a separator. The anode may output lithium ions during cycling of the battery. A graded interface layer may be disposed on the anode and include a tin fluoride layer. A tin-lithium alloy region may form between the tin fluoride layer and the anode. The tin-lithium alloy region may produce a lithium fluoride uniformly dispersed between the anode and the tin fluoride layer during operational cycling of the battery. The electrolyte may disperse throughout the cathode and the anode. The separator may be positioned between the anode and cathode. In some aspects, the battery may also include lithium electrodeposited on one or more exposed surfaces of the anode.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Applicant: Lyten, Inc.
    Inventors: Jerzy Gazda, Qianwen Huang, Elena Rogojina, You Li, Jesse Baucom, Jeffrey Bell, John Thorne, Anurag Kumar, Jingning Shan