Patents by Inventor Anurag Kumar

Anurag Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210126258
    Abstract: This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
    Type: Application
    Filed: September 9, 2020
    Publication date: April 29, 2021
    Applicant: Lyten, Inc.
    Inventors: Jeffrey Bell, You Li, Jesse Baucom, John Thorne, Qianwen Huang, Anurag Kumar, Jerzy Gazda, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Publication number: 20210126244
    Abstract: This disclosure provides a lithium (Li) ion battery that includes an anode, a cathode positioned opposite to the anode, a porous separator positioned between the anode and the cathode, and a liquid electrolyte in contact with the anode and the cathode. The anode includes an electrically conductive substrate. A first film is deposited on the electrically conductive substrate. The first film includes a first concentration of carbon particles in contact with each other and defines a first electrical conductivity for the first film. Each of the carbon particles includes a plurality of aggregates formed of few layer graphene sheets. The plurality of aggregates form a porous structure configured to undergo a lithiation, which can include any one or more of an intercalation operation or a plating operation. The anode and the cathode can include an electroactive material. The porous structure can provide conduction between the few layer graphene sheets.
    Type: Application
    Filed: July 29, 2020
    Publication date: April 29, 2021
    Applicant: Lyten, Inc.
    Inventors: Jerzy Gazda, Bruce Lanning, Jeffrey Bell, Anurag Kumar, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs, Michael W. Stowell
  • Publication number: 20210003665
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with sensor output segmentation are provided. For example, sensor data can be accessed. The sensor data can include sensor data returns representative of an environment detected by a sensor across the sensor's field of view. Each sensor data return can be associated with a respective bin of a plurality of bins corresponding to the field of view of the sensor. Each bin can correspond to a different portion of the sensor's field of view. Channels can be generated for each of the plurality of bins and can include data indicative of a range and an azimuth associated with a sensor data return associated with each bin. Furthermore, a semantic segment of a portion of the sensor data can be generated by inputting the channels for each bin into a machine-learned segmentation model trained to generate an output including the semantic segment.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 7, 2021
    Inventors: Ankit Laddha, Carlos Vallespi-Gonzalez, Duncan Blake Barber, Jacob White, Anurag Kumar
  • Publication number: 20200352017
    Abstract: Embodiments of this disclosure describe an electrode biasing scheme that enables maintaining a nearly constant sheath voltage and thus creating a mono-energetic IEDF at the surface of the substrate that consequently enables a precise control over the shape of IEDF and the profile of the features formed in the surface of the substrate.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Leonid DORF, Olivier LUERE, Rajinder DHINDSA, James ROGERS, Sunil SRINIVASAN, Anurag Kumar MISHRA
  • Patent number: 10791617
    Abstract: Embodiments of this disclosure describe an electrode biasing scheme that enables maintaining a nearly constant sheath voltage and thus creating a mono-energetic IEDF at the surface of the substrate that consequently enables a precise control over the shape of IEDF and the profile of the features formed in the surface of the substrate.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: September 29, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Olivier Luere, Rajinder Dhindsa, James Rogers, Sunil Srinivasan, Anurag Kumar Mishra
  • Publication number: 20200243303
    Abstract: Embodiments described herein are applicable for use in all types of plasma assisted or plasma enhanced processing chambers and also for methods of plasma assisted or plasma enhanced processing of a substrate. More specifically, embodiments of this disclosure include a broadband filter assembly, also referred to herein as a filter assembly, that is configured to reduce and/or prevent RF leakage currents from being transferred from one or more RF driven components to a ground through other electrical components that are directly or indirectly electrically coupled to the RF driven components and ground with high input impedance (low current loss) making it compatible with shaped DC pulse bias applications.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 30, 2020
    Inventors: Anurag Kumar MISHRA, James ROGERS, Leonid DORF, Rajinder DHINDSA, Olivier LUERE
  • Patent number: 10692363
    Abstract: This disclosure relates to method and system for determining probability of an alarm generated by an alarm system. The method may include receiving sensor data and maintenance data. The sensor data may include one or more environmental parameters and one or more trigger parameters, and the alarm is generated based on the one or more trigger parameters. The method may further include generating one or more input vectors based on the sensor data and the maintenance data, and determining a spuriosity index of the alarm based on the one or more input vectors using a machine learning model. The machine learning model may be created using historical sensor data and historical maintenance data, and the spuriosity index is indicative of the probability of the alarm.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: June 23, 2020
    Assignee: Wipro Limited
    Inventors: Anurag Kumar Srivastava, Utkarsh Bhakne
  • Publication number: 20200175847
    Abstract: This disclosure relates to method and system for determining probability of an alarm generated by an alarm system. The method may include receiving sensor data and maintenance data. The sensor data may include one or more environmental parameters and one or more trigger parameters, and the alarm is generated based on the one or more trigger parameters. The method may further include generating one or more input vectors based on the sensor data and the maintenance data, and determining a spuriosity index of the alarm based on the one or more input vectors using a machine learning model. The machine learning model may be created using historical sensor data and historical maintenance data, and the spuriosity index is indicative of the probability of the alarm.
    Type: Application
    Filed: January 29, 2019
    Publication date: June 4, 2020
    Inventors: Anurag Kumar Srivastava, Utkarsh Bhakne
  • Patent number: 10654453
    Abstract: Systems and methods for implementing a low-latency braking action for an autonomous vehicle are provided. A computing system can include a vehicle autonomy system comprising one or more processors configured to determine a motion plan for an autonomous vehicle based at least in part on sensor data from one or more sensors of the autonomous vehicle. The computing system can further include a low-latency braking system comprising one or more processors configured to determine that the autonomous vehicle has a likelihood of colliding with an object in a surrounding environment based at least in part on a previously-determined motion plan obtained from the vehicle autonomy system. In response to determining that the autonomous vehicle has a likelihood of colliding with the object in the surrounding environment, the low-latency braking system can further be configured to implement a braking action for the autonomous vehicle.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: May 19, 2020
    Assignee: UATC LLC
    Inventors: Narek Melik-Barkhudarov, Michael W. Bode, Randy Warner, Dillon Collins, Anurag Kumar, Carl Knox Wellington
  • Publication number: 20200154556
    Abstract: Embodiments of this disclosure describe an electrode biasing scheme that enables maintaining a nearly constant sheath voltage and thus creating a mono-energetic IEDF at the surface of the substrate that consequently enables a precise control over the shape of IEDF and the profile of the features formed in the surface of the substrate.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Inventors: Leonid DORF, Olivier LUERE, Rajinder DHINDSA, James ROGERS, Sunil SRINIVASAN, Anurag Kumar MISHRA
  • Patent number: 10555412
    Abstract: Embodiments of this disclosure describe an electrode biasing scheme that enables maintaining a nearly constant sheath voltage and thus creating a mono-energetic IEDF at the surface of the substrate that consequently enables a precise control over the shape of IEDF and the profile of the features formed in the surface of the substrate.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: February 4, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Olivier Luere, Rajinder Dhindsa, James Rogers, Sunil Srinivasan, Anurag Kumar Mishra
  • Publication number: 20200031735
    Abstract: Embodiments of the present disclosure describe catalysts, methods of preparing catalysts, methods of forming hydrocarbons using the catalysts, and the like.
    Type: Application
    Filed: July 29, 2019
    Publication date: January 30, 2020
    Inventors: Anurag Kumar, Neil Razdan, Aditya Bhan
  • Publication number: 20190350072
    Abstract: Embodiments of this disclosure describe an electrode biasing scheme that enables maintaining a nearly constant sheath voltage and thus creating a mono-energetic IEDF at the surface of the substrate that consequently enables a precise control over the shape of IEDF and the profile of the features formed in the surface of the substrate.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 14, 2019
    Inventors: Leonid DORF, Olivier LUERE, Rajinder DHINDSA, James ROGERS, Sunil SRINIVASAN, Anurag Kumar MISHRA
  • Patent number: 10448494
    Abstract: Embodiments of this disclosure describe an electrode biasing scheme that enables maintaining a nearly constant sheath voltage and thus creating a mono-energetic IEDF at the surface of the substrate that consequently enables a precise control over the shape of IEDF and the profile of the features formed in the surface of the substrate.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: October 15, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Olivier Luere, Rajinder Dhindsa, James Rogers, Sunil Srinivasan, Anurag Kumar Mishra
  • Patent number: 10448495
    Abstract: Embodiments of this disclosure describe an electrode biasing scheme that enables maintaining a nearly constant sheath voltage and thus creating a mono-energetic IEDF at the surface of the substrate that consequently enables a precise control over the shape of IEDF and the profile of the features formed in the surface of the substrate.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: October 15, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Olivier Luere, Rajinder Dhindsa, James Rogers, Sunil Srinivasan, Anurag Kumar Mishra
  • Publication number: 20190228952
    Abstract: Embodiments of the present disclosure generally relate to methods and related process equipment for forming structures on substrates, such as etching high aspect ratio structures within one or more layers formed over a substrate. The methods and related equipment described herein can improve the formation of the structures on substrates by controlling the curvature of the plasma-sheath boundary near the periphery of the substrate, for example, by generating a substantially flat plasma-sheath boundary over the entire substrate (i.e., center to edge). The methods and related equipment described below can provide control over the curvature of the plasma-sheath boundary, including generation of the flat plasma-sheath boundary by applying RF power to an edge ring surrounding the substrate using a separate and independent RF power source.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 25, 2019
    Inventors: Leonid DORF, Anurag Kumar MISHRA, Olivier LUERE, Rajinder DHINDSA, James ROGERS, Denis M. KOOSAU, Sunil SRINIVASAN
  • Patent number: 10319537
    Abstract: A method of graphitic petal synthesis includes a step of providing a flexible carbon substrate, such as that including carbon microfibers. The method further includes the step of subjecting flexible carbon substrate to microwave plasma enhanced chemical vapor deposition. The resulting synthesized graphitic petal structure may optionally be coated with PANI.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: June 11, 2019
    Assignee: Purdue Research Foundation
    Inventors: Jonathan Clay Claussen, Anurag Kumar, Timothy S. Fisher, Ronald G. Reifenberger, Guoping Xiong, David Benjamin Jaroch, David Marshall Porterfield, Rajib Paul
  • Patent number: 10283329
    Abstract: Apparatuses and methods are provided that, in some embodiments use an adjustable middle coil to tune plasma density in a plasma processing system. For example, in one embodiment, a plasma processing apparatus includes an impedance match circuit coupled to an Rf power source. The impedance match circuit measures voltage and current at an inner and an outer coil. The match circuit calculates plasma density from the measured voltage and/or current. An adjustable middle coil located between the inner and outer coils is adjusted and/or replaced to tune the plasma density radial profile.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: May 7, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Anurag Kumar Mishra, James Rogers, John Poulose
  • Publication number: 20190061712
    Abstract: Systems and methods for implementing a low-latency braking action for an autonomous vehicle are provided. A computing system can include a vehicle autonomy system comprising one or more processors configured to determine a motion plan for an autonomous vehicle based at least in part on sensor data from one or more sensors of the autonomous vehicle. The computing system can further include a low-latency braking system comprising one or more processors configured to determine that the autonomous vehicle has a likelihood of colliding with an object in a surrounding environment based at least in part on a previously-determined motion plan obtained from the vehicle autonomy system. In response to determining that the autonomous vehicle has a likelihood of colliding with the object in the surrounding environment, the low-latency braking system can further be configured to implement a braking action for the autonomous vehicle.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 28, 2019
    Inventors: Narek Melik-Barkhudarov, Michael W. Bode, Randy Warner, Dillon Collins, Anurag Kumar, Carl Knox Wellington
  • Publication number: 20190066227
    Abstract: Method and system for managing data flow across a hydrocarbon accounting system are disclosed. The method includes identifying at least one failed tag associated with location nodes in a hydrocarbon data management and processing system. Thereafter, at least one source tag associated with the at least one failed tag is identified. Attribute values of the at least one source tag and a source mapping associated with the at least one failed tag is then retrieved. Attribute values retrieved from at least one successful tag and the at least one source tag are then compared with an associated predefined threshold range. Notification messages are generated for each of the at least one failed tag. Notification messages may also be generated for successful tags and source tags having attribute values outside the associated predefined threshold range. The method includes performing a self-healing technique based on the at least one notification message.
    Type: Application
    Filed: October 19, 2017
    Publication date: February 28, 2019
    Inventors: Anurag Kumar Srivastava, Dhaval Shah, Prabhat Kumar Trivedi