Patents by Inventor Arash Farhoodfar

Arash Farhoodfar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10880015
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: December 29, 2020
    Assignee: INPHI CORPORATION
    Inventors: Benjamin P. Smith, Jamal Riani, Sudeep Bhoja, Arash Farhoodfar, Vipul Bhatt
  • Publication number: 20200351144
    Abstract: The present invention is directed to data communication. In certain embodiments, the present invention provides switching mechanism for choosing between redundant communication links. Data received from a first set of communication links are processed to have alignment markers removed, and first figure of merit value is determined based on the data without alignment markers. Similarly, a second figure of merit value is determined for the data received from the second set of communication links. A switch selects between the first set of communication links and the second set of communication links based on their respective figure of merit values. Alignment markers are inserted into the data transmitted through the selected set of data links. There are other embodiments as well.
    Type: Application
    Filed: July 15, 2020
    Publication date: November 5, 2020
    Inventors: Arash FARHOODFAR, Jitendra SWARNKAR, Michael DUCKERING, Andre SCZAPANEK, Scott FELLER, Shaun LYTOLLIS
  • Publication number: 20200343999
    Abstract: The present invention is directed to data communication systems and techniques thereof. More specifically, embodiments of the present invention provide an FEC encoder that generates parity symbols that are embedded into FEC blocks. An FEC decoder determines whether to perform error correction based on the parity symbols. When performing error correction, the decoder selects a worst symbol from a segment of symbols, and the worst symbol is corrected. There are other embodiments as well.
    Type: Application
    Filed: July 14, 2020
    Publication date: October 29, 2020
    Inventors: Jamal RIANI, Benjamin SMITH, Volodymyr SHVYDUN, Sudeep BHOJA, Arash FARHOODFAR
  • Patent number: 10749629
    Abstract: The present invention is directed to data communication systems and techniques thereof. More specifically, embodiments of the present invention provide an FEC encoder that generates parity symbols that are embedded into FEC blocks. An FEC decoder determines whether to perform error correction based on the parity symbols. When performing error correction, the decoder selects a worst symbol from a segment of symbols, and the worst symbol is corrected. There are other embodiments as well.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: August 18, 2020
    Assignee: INPHI CORPORATION
    Inventors: Jamal Riani, Benjamin P. Smith, Volodymyr Shvydun, Sudeep Bhoja, Arash Farhoodfar
  • Patent number: 10749732
    Abstract: The present invention is directed to data communication. In certain embodiments, the present invention provides switching mechanism for choosing between redundant communication links. Data received from a first set of communication links are processed to have alignment markers removed, and first figure of merit value is determined based on the data without alignment markers. Similarly, a second figure of merit value is determined for the data received from the second set of communication links. A switch selects between the first set of communication links and the second set of communication links based on their respective figure of merit values. Alignment markers are inserted into the data transmitted through the selected set of data links. There are other embodiments as well.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: August 18, 2020
    Assignee: INPHI CORPORATION
    Inventors: Arash Farhoodfar, Jitendra Swarnkar, Michael Duckering, Andre Sczapanek, Scott Feller, Shaun Lytollis
  • Publication number: 20200244561
    Abstract: The present invention is directed to data communication systems and techniques thereof. More specifically, embodiments of the present invention provide a retimer module that includes plurality of communication lanes for interfacing with a host system and a line system. The retimer module includes a link monitor and cross point sections. The retimer also includes a management interface module. There are other embodiments as well.
    Type: Application
    Filed: April 14, 2020
    Publication date: July 30, 2020
    Inventors: Jamal RIANI, Arash FARHOODFAR, Sudeep BHOJA, Tarun SETYA
  • Publication number: 20200244394
    Abstract: An optical module processes first FEC (Forward Error Correction) encoded data produced by a first FEC encoder. The optical module has a second FEC encoder for further coding a subset of the first FEC encoded data to produce second FEC encoded data. The optical module also has an optical modulator for modulating, based on a combination of the second FEC encoded data and a remaining portion of the first FEC encoded data that is not further coded, an optical signal for transmission over an optical channel. The second FEC encoder is an encoder for an FEC code that has a bit-level trellis representation with a number of states in any section of the bit-level trellis representation being less than or equal to 64 states. In this manner, the second FEC encoder has relatively low complexity (e.g. relatively low transistor count) that can reduce power consumption for the optical module.
    Type: Application
    Filed: April 20, 2020
    Publication date: July 30, 2020
    Inventors: Benjamin P. SMITH, Arash FARHOODFAR
  • Publication number: 20200228139
    Abstract: Embodiments relate to the emulation of the effect of Forward Error Correction (FEC) codes, e.g., GF10 Reed Solomon (RS) FEC codes, on the bit error ratio (BER) of received Pseudo-Random Binary Sequences (PRBS) patterns. In particular, embodiments group errors into RS-FEC symbols and codewords in order to determine if the errors are correctable. By emulating the error correction capabilities of FEC codes in order to determine which errors are correctable by the code, embodiments afford a more accurate representation of the post-FEC BER of RS FEC codes from links carrying PRBS patterns. This FEC code emulation provides error correction statistics, for stand-alone use or for error correction in connection with Bit Error Rate Testers (BERTs).
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Inventors: Andre SZCZEPANEK, Arash FARHOODFAR, Sudeep BHOJA, Sean BATTY, Shaun LYTOLLIS
  • Publication number: 20200220659
    Abstract: The present invention is directed to data communication systems and techniques thereof. More specifically, embodiments of the present invention provide an FEC encoder that processes an interleaved data stream and generates parity symbols that are embedded into FEC blocks. An FEC decoder determines whether to perform error correction based on the parity symbols. When performing error correction, the decoder selects a worst symbol from a segment of symbols, and the worst symbol is corrected. There are other embodiments as well.
    Type: Application
    Filed: March 19, 2020
    Publication date: July 9, 2020
    Inventors: Jamal RIANI, Benjamin SMITH, Volodymyr SHVYDUN, Srinivas SWAMINATHAN, Arash Farhoodfar
  • Publication number: 20200186256
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Benjamin P. SMITH, Jamal RIANI, Sudeep BHOJA, Arash FARHOODFAR, Vipul BHATT
  • Publication number: 20200169448
    Abstract: The present invention is directed to data communication. In certain embodiments, the present invention provides switching mechanism for choosing between redundant communication links. Data received from a first set of communication links are processed to have alignment markers removed, and first figure of merit value is determined based on the data without alignment markers. Similarly, a second figure of merit value is determined for the data received from the second set of communication links. A switch selects between the first set of communication links and the second set of communication links based on their respective figure of merit values. Alignment markers are inserted into the data transmitted through the selected set of data links. There are other embodiments as well.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 28, 2020
    Inventors: Arash FARHOODFAR, Jitendra SWARNKAR, Michael DUCKERING, Andre SCZAPANEK, Scott FELLER, Shaun LYTOLLIS
  • Patent number: 10659192
    Abstract: An optical module processes first FEC (Forward Error Correction) encoded data produced by a first FEC encoder. The optical module has a second FEC encoder for further coding a subset of the first FEC encoded data to produce second FEC encoded data. The optical module also has an optical modulator for modulating, based on a combination of the second FEC encoded data and a remaining portion of the first FEC encoded data that is not further coded, an optical signal for transmission over an optical channel. The second FEC encoder is an encoder for an FEC code that has a bit-level trellis representation with a number of states in any section of the bit-level trellis representation being less than or equal to 64 states. In this manner, the second FEC encoder has relatively low complexity (e.g. relatively low transistor count) that can reduce power consumption for the optical module.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: May 19, 2020
    Assignee: INPHI CORPORATION
    Inventors: Benjamin P. Smith, Arash Farhoodfar
  • Patent number: 10659337
    Abstract: The present invention is directed to data communication systems and techniques thereof. More specifically, embodiments of the present invention provide a retimer module that includes plurality of communication lanes for interfacing with a host system and a line system. The retimer module includes a link monitor and cross point sections. The retimer also includes a management interface module. There are other embodiments as well.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: May 19, 2020
    Assignee: INPHI CORPORATION
    Inventors: Jamal Riani, Arash Farhoodfar, Sudeep Bhoja, Tarun Setya
  • Publication number: 20200145027
    Abstract: Multiple data permutation operations in respective different dimensions are used to provide an overall effective data permutation using smaller blocks of data in each permutation than would be used in directly implementing the overall permutation in a single permutation operation. Data that has been permuted in one permutation operation is block interleaved, and the interleaved data is then permuted in a subsequent permutation operation. A matrix transpose is one example of block interleaving that could be applied between permutation operations.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Arash FARHOODFAR, Frank R. KSCHISCHANG, Benjamin P. SMITH, Andrew HUNT
  • Patent number: 10637501
    Abstract: Embodiments relate to the emulation of the effect of Forward Error Correction (FEC) codes, e.g., GF10 Reed Solomon (RS) FEC codes, on the bit error ratio (BER) of received Pseudo-Random Binary Sequences (PRBS) patterns. In particular, embodiments group errors into RS-FEC symbols and codewords in order to determine if the errors are correctable. By emulating the error correction capabilities of FEC codes in order to determine which errors are correctable by the code, embodiments afford a more accurate representation of the post-FEC BER of RS FEC codes from links carrying PRBS patterns. This FEC code emulation provides error correction statistics, for stand-alone use or for error correction in connection with Bit Error Rate Testers (BERTs).
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: April 28, 2020
    Assignee: INPHI CORPORATION
    Inventors: Andre Szczepanek, Arash Farhoodfar, Sudeep Bhoja, Sean Batty, Shaun Lytollis
  • Patent number: 10601449
    Abstract: For some applications such as high-speed communication over short-reach links, the complexity and associated high latency provided by existing modulators may be unsuitable. According to an aspect, the present disclosure provides a modulator that can reduce latency for applications such as 40G/100G communication over copper cables or SMF. The modulator has a symbol mapper for mapping a bit stream into symbols, and a multi-level encoder including an inner encoder and an outer encoder for encoding only a portion of the bit stream. In some implementations, the multi-level encoder is configured such that an information block size of the inner encoder is small and matches a field size of the outer encoder. Therefore, components that would be used to accommodate larger block sizes can be omitted. The effect is that complexity and latency can be reduced. According to another aspect, the present disclosure provides a demodulator that is complementary to the modulator.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: March 24, 2020
    Assignee: INPHI CORPORATION
    Inventors: Benjamin Smith, Arash Farhoodfar, Stewart Crozier, Frank R. Kschischang, Andrew Hunt
  • Patent number: 10601518
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: March 24, 2020
    Assignee: INPHI CORPORATION
    Inventors: Benjamin P. Smith, Jamal Riani, Sudeep Bhoja, Arash Farhoodfar, Vipul Bhatt
  • Patent number: 10587452
    Abstract: The present invention is directed to data communication. In certain embodiments, the present invention provides switching mechanism for choosing between redundant communication links. Data received from a first set of communication links are processed to have alignment markers removed, and first figure of merit value is determined based on the data without alignment markers. Similarly, a second figure of merit value is determined for the data received from the second set of communication links. A switch selects between the first set of communication links and the second set of communication links based on their respective figure of merit values. Alignment markers are inserted into the data transmitted through the selected set of data links. There are other embodiments as well.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: March 10, 2020
    Assignee: INPHI CORPORATION
    Inventors: Arash Farhoodfar, Jitendra Swarnkar, Michael Duckering, Andre Sczapanek, Scott Feller, Shaun Lytollis
  • Publication number: 20200076720
    Abstract: The present invention is directed to data communication systems and techniques thereof. More specifically, embodiments of the present invention provide a retimer module that includes plurality of communication lanes for interfacing with a host system and a line system. The retimer module includes a link monitor and cross point sections. The retimer also includes a management interface module. There are other embodiments as well.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 5, 2020
    Inventors: Jamal RIANI, Arash FARHOODFAR, Sudeep BHOJA, Tarun SETYA
  • Patent number: 10567005
    Abstract: Multiple data permutation operations in respective different dimensions are used to provide an overall effective data permutation using smaller blocks of data in each permutation than would be used in directly implementing the overall permutation in a single permutation operation. Data that has been permuted in one permutation operation is block interleaved, and the interleaved data is then permuted in a subsequent permutation operation. A matrix transpose is one example of block interleaving that could be applied between permutation operations.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: February 18, 2020
    Assignee: INPHI CORPORATION
    Inventors: Arash Farhoodfar, Frank R. Kschischang, Benjamin P. Smith, Andrew Hunt