Patents by Inventor Aritoshi Sugimoto

Aritoshi Sugimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120520
    Abstract: A decrease in output power due to a foreign matter present on a base at the time of forming a thin film solid electrolyte layer is limited, and an increase in yield even when an area of a fuel battery cell is increased, is obtained. The fuel battery cell has a membrane electrode assembly including a lower electrode layer, first and second solid electrolyte layers, and an upper electrode layer formed on a support substrate. An interface between the first and second solid electrolyte layers is flat as compared with an interface between the lower electrode layer and the solid electrolyte layer, and the second solid electrolyte layer has a thickness at which a leakage current between the first solid electrolyte layer and the second solid electrolyte layer is less than an allowable value even when an output voltage of the fuel battery cell is generated.
    Type: Application
    Filed: March 31, 2021
    Publication date: April 11, 2024
    Inventors: Yoshitaka SASAGO, Noriyuki SAKUMA, Natsuki YOKOYAMA, Koji FUJISAKI, Nobuyuki MISE, Aritoshi SUGIMOTO
  • Patent number: 11855318
    Abstract: The present invention aims to provide a fuel battery system improved in reliability by accurately detecting when a fuel electrode gas or an air electrode gas has leaked. A fuel battery cell according to the present invention includes a first electrode, an electrolyte membrane, and a second electrode which are layered on a support substrate. Further, at least any one of the first electrode, the electrolyte membrane, and the second electrode is electrically isolated by an insulating member to form a first region and a second region. The insulating member is disposed at a position where the insulating member does not overlap with an opening portion of the support substrate (refer to FIG. 3).
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: December 26, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Munenori Degawa, Noriyuki Sakuma, Yoshitaka Sasago, Aritoshi Sugimoto, Nobuyuki Mise, Takashi Tsutsumi
  • Publication number: 20230127271
    Abstract: A fuel cell 1 includes a silicon substrate 2, a porous support material layer 5, a plurality of holes 60 or columns 40, and a stacked body. The stacked body includes an upper electrode layer 10, a solid electrolyte layer 100 and a lower electrode layer 20. The upper electrode layer 10 is also formed on a surface parallel to a main surface of the silicon substrate 2 in a manner of being continuous to the upper electrode layer 10 formed in the plurality of holes 60 or columns 40, or the lower electrode layer 20 is also formed on a surface parallel to the main surface of the silicon substrate 2 in a manner of being continuous to the lower electrode layer 20 formed in the plurality of holes 60 or columns 40. The stacked body is supported by the porous support material layer 5 in at least upper end portions and lower end portions of the plurality of holes 60 or columns 40.
    Type: Application
    Filed: May 13, 2020
    Publication date: April 27, 2023
    Inventors: Yoshitaka SASAGO, Noriyuki SAKUMA, Natsuki YOKOYAMA, Atsushi UNEMOTO, Takashi TSUTSUMI, Aritoshi SUGIMOTO, Toru ARAMAKI, Nobuyuki MISE
  • Publication number: 20230006233
    Abstract: An object of the present invention is to provide a fuel cell that maintains electric generation efficiency of the fuel cell and that has high reliability in which an electrolyte film is not easily damaged. The fuel cell according to the present invention includes a stress adjusting layer covering an opening above a support substrate, and the stress adjusting layer has tensile stress with respect to the support substrate and has a columnar crystal structure in which a grain boundary extends along a direction parallel to a film thickness direction (see FIG. 2).
    Type: Application
    Filed: November 8, 2019
    Publication date: January 5, 2023
    Inventors: Noriyuki SAKUMA, Yoshitaka SASAGO, Yumiko ANZAI, Sonoko MIGITAKA, Natsuki YOKOYAMA, Takashi TSUTSUMI, Aritoshi SUGIMOTO, Toru ARAMAKI
  • Publication number: 20220399558
    Abstract: An object of the present invention is to provide a fuel battery cell of a high power generation output by increasing an area of an effective power generation region contributing to power generation while ensuring mechanical strength of the fuel battery cell. The fuel battery cell according to the present invention is provided with a first and a second insulating films between a support substrate and a first electrode. The support substrate has a first opening, the first insulating film has a second opening, and the second insulating film has a third opening. An opening area of the first opening is larger than that of the second opening, and an opening area of the third opening is larger than that of the second opening (see FIG. 2).
    Type: Application
    Filed: November 7, 2019
    Publication date: December 15, 2022
    Inventors: Noriyuki SAKUMA, Yoshitaka SASAGO, Yumiko ANZAI, Sonoko MIGITAKA, Natsuki YOKOYAMA, Takashi TSUTSUMI, Aritoshi SUGIMOTO, Toru ARAMAKI
  • Publication number: 20220393215
    Abstract: An object of the invention is to increase the output power of a solid oxide fuel cell by making a lower electrode layer porous so as to form a three-phase interface and reducing a thickness of a solid electrolyte layer to 1 micrometer or less. A fuel cell according to the invention includes a first electrode layer at a position where an opening formed in a board is covered, and a solid electrolyte layer having a thickness of 1000 nm or less. At least a part of a region of the first electrode layer covering the opening is porous (see FIG. 5).
    Type: Application
    Filed: November 7, 2019
    Publication date: December 8, 2022
    Inventors: Yoshitaka SASAGO, Noriyuki SAKUMA, Yumiko ANZAI, Sonoko MIGITAKA, Natsuki YOKOYAMA, Takashi TSUTSUMI, Aritoshi SUGIMOTO, Toru ARAMAKI
  • Publication number: 20220384835
    Abstract: The present invention aims to reduce a failure in a fuel cell module and reduce manufacturing costs by specifying and taking countermeasures against cells in short-circuit failure from among fuel cells manufactured on a substrate by using a thin-film deposition process. In a fuel cell array according to the present invention, each fuel cell includes a solid electrolyte layer between a first electrode layer and a second electrode layer. A first wiring is connected to the second electrode layer, and a second wiring is connected to the first electrode layer through a connection element. The connection element is formed by sandwiching a conductive layer between two electrodes (refer to FIG. 8).
    Type: Application
    Filed: November 7, 2019
    Publication date: December 1, 2022
    Inventors: Yoshitaka SASAGO, Noriyuki SAKUMA, Yumiko ANZAI, Sonoko MIGITAKA, Natsuki YOKOYAMA, Takashi TSUTSUMI, Aritoshi SUGIMOTO, Toru ARAMAKI
  • Patent number: 11417892
    Abstract: Provided is a highly reliable fuel cell that improves power generation efficiency of the fuel cell and that is less likely to cause damage to an electrode and an electrolyte film. The fuel cell includes a support substrate (2, 3) having a region in which a support portion having a mesh-like shape in a plan view is provided, a first electrode 4 on the support substrate, an electrolyte film 5 on the first electrode, and a second electrode 6 on the electrolyte film. The first electrode includes a first thin film electrode 4A formed in a manner of covering at least the region, and a first mesh-like electrode 4B connected to the first thin film electrode and provided corresponding to the support portion. The first mesh-like electrode 4B has a film thickness larger than that of the first thin film electrode and has a mesh-like shape in a plan view.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: August 16, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Noriyuki Sakuma, Yoshitaka Sasago, Aritoshi Sugimoto, Nobuyuki Mise, Seiichi Watanabe
  • Publication number: 20220181658
    Abstract: The present invention aims to provide a fuel battery system improved in reliability by accurately detecting when a fuel electrode gas or an air electrode gas has leaked. A fuel battery cell according to the present invention includes a first electrode, an electrolyte membrane, and a second electrode which are layered on a support substrate. Further, at least any one of the first electrode, the electrolyte membrane, and the second electrode is electrically isolated by an insulating member to form a first region and a second region. The insulating member is disposed at a position where the insulating member does not overlap with an opening portion of the support substrate (refer to FIG. 3).
    Type: Application
    Filed: April 26, 2019
    Publication date: June 9, 2022
    Applicant: HITACHI HIGH-TECH CORPORATION
    Inventors: Munenori DEGAWA, Noriyuki SAKUMA, Yoshitaka SASAGO, Aritoshi SUGIMOTO, Nobuyuki MISE, Takashi TSUTSUMI
  • Publication number: 20220069327
    Abstract: Provided is a solid oxide fuel cell having high power generation efficiency and being operable at low temperature. A fuel cell of the present invention includes a cathode electrode, an anode electrode, and a solid electrolyte layer disposed between the cathode electrode and the anode electrode and formed from polycrystalline zirconia or polycrystalline ceria doped with divalent or trivalent positive ions and having proton conductivity, in which the cathode electrode and the solid electrolyte layer are stacked with a first oxygen ion blocking layer interposed therebetween.
    Type: Application
    Filed: January 21, 2019
    Publication date: March 3, 2022
    Applicant: HITACHI HIGH-TECH CORPORATION
    Inventors: Yoshitaka SASAGO, Noriyuki SAKUMA, Yumiko ANZAI, Munenori DEGAWA, Chisaki TAKUBO, Noboyuki MISE, Seiichi WATANABE, Aritoshi SUGIMOTO
  • Publication number: 20210408556
    Abstract: Provided is a highly reliable fuel cell that improves power generation efficiency of the fuel cell and that is less likely to cause damage to an electrode and an electrolyte film. The fuel cell includes a support substrate (2, 3) having a region in which a support portion having a mesh-like shape in a plan view is provided, a first electrode 4 on the support substrate, an electrolyte film 5 on the first electrode, and a second electrode 6 on the electrolyte film. The first electrode includes a first thin film electrode 4A formed in a manner of covering at least the region, and a first mesh-like electrode 4B connected to the first thin film electrode and provided corresponding to the support portion. The first mesh-like electrode 4B has a film thickness larger than that of the first thin film electrode and has a mesh-like shape in a plan view.
    Type: Application
    Filed: October 12, 2018
    Publication date: December 30, 2021
    Inventors: Noriyuki SAKUMA, Yoshitaka SASAGO, Aritoshi SUGIMOTO, Nobuyuki MISE, Seiichi WATANABE
  • Patent number: 7957579
    Abstract: An apparatus for processing a defect candidate image, including: a scanning electron microscope for taking an enlarged image of a specimen by irradiating and scanning a converged electron beam onto the specimen and detecting charged particles emanated from the specimen by the irradiation; an image processor for processing the image taken by the scanning electron microscope to detect defect candidates on the specimen and classify the detected defect candidates into one of plural classes; a memory for storing output from the image processor including images of the detected defect candidates; and a display unit which displays information stored in the memory and an indicator, wherein the display unit displays a distribution of the detected and classified defect candidates in a map format by distinguishing by the classified class, and the display unit also displays an image of a defect candidate stored in the memory together with the map which is indicated on the map by the indicator.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 7, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Hiroi, Masahiro Watanabe, Chie Shishido, Aritoshi Sugimoto, Maki Tanaka, Hiroshi Miyai, Asahiro Kuni, Yasuhiko Nara
  • Patent number: 7952074
    Abstract: A circuit pattern inspection method and an apparatus therefore, in which the whole of a portion to be inspected of a sample to be inspected is made to be in a predetermined changed state, the portion to be inspected is irradiated with an image-forming high-density electron beam while scanning the electron beam, secondary charged particles are detected at a portion irradiated with the electron beam after a predetermined period of time from an instance when the electron beam is irradiated, an image is formed on the basis of the thus detected secondary charged particle signal, and the portion to be inspected is inspected by using the thus formed image.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: May 31, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Shinada, Mari Nozoe, Haruo Yoda, Kimiaki Ando, Katsuhiro Kuroda, Yutaka Kaneko, Maki Tanaka, Shunji Maeda, Hitoshi Kubota, Aritoshi Sugimoto, Katsuya Sugiyama, Atsuko Takafuji, Yusuke Yajima, Hiroshi Tooyama, Tadao Ino, Takashi Hiroi, Kazushi Yoshimura, Yasutsugu Usami
  • Patent number: 7894658
    Abstract: An apparatus for processing a defect candidate image, including: an imager for taking an enlarged image of a specimen; an image processor for processing the image taken by the imager to detect defect candidates existing on the specimen and classify the detected defect candidates into one of plural defect classes; a memory for storing information of the defect candidates including the images of the defect candidates and the classified defect class data outputted from the image processor; and a display unit having a display screen for displaying information stored in the memory, wherein the display unit displays an image of the defect candidates together with the defect class data stored in the memory and the displayed defect class data is changeable on the display screen, and the memory changes the stored defect class data of the displayed defect candidate to the changed defect class data.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 22, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Hiroi, Masahiro Watanabe, Chie Shishido, Aritoshi Sugimoto, Maki Tanaka, Hiroshi Miyai, Asahiro Kuni, Yasuhiko Nara
  • Publication number: 20100246933
    Abstract: An apparatus for processing a defect candidate image, including: a scanning electron microscope for taking an enlarged image of a specimen by irradiating and scanning a converged electron beam onto the specimen and detecting charged particles emanated from the specimen by the irradiation; an image processor for processing the image taken by the scanning electron microscope to detect defect candidates on the specimen and classify the detected defect candidates into one of plural classes; a memory for storing output from the image processor including images of the detected defect candidates; and a display unit which displays information stored in the memory and an indicator, wherein the display unit displays a distribution of the detected and classified defect candidates in a map format by distinguishing by the classified class, and the display unit also displays an image of a defect candidate stored in the memory together with the map which is indicated on the map by the indicator.
    Type: Application
    Filed: October 31, 2007
    Publication date: September 30, 2010
    Inventors: Takashi Hiroi, Masahiro Watanabe, Chie Shishido, Aritoshi Sugimoto, Maki Tanaka, Hiroshi Miyai, Asahiro Kuni, Yasuhiko Nara
  • Publication number: 20080302964
    Abstract: A circuit pattern inspection method and an apparatus therefor, in which the whole of a portion to be inspected of a sample to be inspected is made to be in a predetermined changed state, the portion to be inspected is irradiated with an image-forming high-density electron beam while scanning the electron beam, secondary charged particles are detected at a portion irradiated with the electron beam after a predetermined period of time from an instance when the electron beam is irradiated, an image is formed on the basis of the thus detected secondary charged particle signal, and the portion to be inspected is inspected by using the thus formed image.
    Type: Application
    Filed: August 12, 2008
    Publication date: December 11, 2008
    Inventors: Hiroyuki Shinada, Mari Nozoe, Haruo Yoda, Kimiaki Ando, Katsuhiro Kuroda, Yutaka Kaneko, Maki Tanaka, Shunji Maeda, Hitoshi Kubota, Aritoshi Sugimoto, Katsuya Sugiyama, Atsuko Takafuji, Yusuke Yajima, Hiroshi Tooyama, Tadao Ino, Takashi Hiroi, Kazushi Yoshimura, Yasutsugu Usami
  • Patent number: 7457453
    Abstract: A pattern inspection apparatus including: an image detecting part for detecting a digital image of an object substrate; a display having a screen on which the digital image of the object substrate and/or a distribution of defect candidates in a map form are displayable; an input device for inputting information of a non-inspection region to be masked on the object substrate by defining a region on the screen on which said distribution of defect candidates is displayed in a map form; a memory part for storing coordinate data, pattern data or feature quantity data of the non-inspection region to be masked on the object substrate inputted on the screen by the input device; and a defect judging part in which the digital image detected by the image detecting part is examined in a state that a region matching with a condition stored in the memory part is masked and a defect is detected in a region other than said masked region.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: November 25, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Hiroi, Masahiro Watanabe, Chie Shishido, Aritoshi Sugimoto, Maki Tanaka, Hiroshi Miyai, Asahiro Kuni, Yasuhiko Nara
  • Patent number: 7417444
    Abstract: A circuit pattern inspection method and an apparatus therefor, in which the whole of a portion to be inspected of a sample to be inspected is made to be in a predetermined charged state, the portion to be inspected is irradiated with an image-forming high-density electron beam while scanning the electron beam, secondary charged particles are detected at a portion irradiated with the electron beam after a predetermined period of time from an instance when the electron beam is irradiated, an image is formed on the basis of the thus detected secondary charged particle signal, and the portion to be inspected is inspected by using the thus formed image.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: August 26, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Shinada, Mari Nozoe, Haruo Yoda, Kimiaki Ando, Katsuhiro Kuroda, Yutaka Kaneko, Maki Tanaka, Shunji Maeda, Hitoshi Kubota, Aritoshi Sugimoto, Katsuya Sugiyama, Atsuko Takafuji, Yusuke Yajima, Hiroshi Tooyama, Tadao Ino, Takashi Hiroi, Kazushi Yoshimura, Yasutsugu Usami
  • Publication number: 20080063257
    Abstract: An apparatus for processing a defect candidate image, including: an imager for taking an enlarged image of a specimen; an image processor for processing the image taken by the imager to detect defect candidates existing on the specimen and classify the detected defect candidates into one of plural defect classes; a memory for storing information of the defect candidates including the images of the defect candidates and the classified defect class data outputted from the image processor; and a display unit having a display screen for displaying information stored in the memory, wherein the display unit displays an image of the defect candidates together with the defect class data stored in the memory and the displayed defect class data is changeable on the display screen, and the memory changes the stored defect class data of the displayed defect candidate to the changed defect class data.
    Type: Application
    Filed: October 31, 2007
    Publication date: March 13, 2008
    Inventors: Takashi HIROI, Masahiro Watanabe, Chie Shishido, Aritoshi Sugimoto, Maki Tanaka, Hiroshi Miyai, Asahiro Kuni, Yasuhiko Nara
  • Publication number: 20080056559
    Abstract: An apparatus for processing a defect candidate image, including: a scanning electron microscope for taking an enlarged image of a specimen by irradiating and scanning a converged electron beam onto the specimen and detecting charged particles emanated from the specimen by the irradiation; an image processor for processing the image taken by the scanning electron microscope to detect defect candidates on the specimen and classify the detected defect candidates into one of plural classes; a memory for storing output from the image processor including images of the detected defect candidates; and a display unit which displays information stored in the memory and an indicator, wherein the display unit displays a distribution of the detected and classified defect candidates in a map format by distinguishing by the classified class, and the display unit also displays an image of a defect candidate stored in the memory together with the map which is indicated on the map by the indicator.
    Type: Application
    Filed: October 31, 2007
    Publication date: March 6, 2008
    Inventors: Takashi Hiroi, Masahiro Watanabe, Chie Shishido, Aritoshi Sugimoto, Maki Tanaka, Hiroshi Miyai, Asahiro Kuni, Yasuhiko Nara