Patents by Inventor Arjang M. Hourtash

Arjang M. Hourtash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10973596
    Abstract: A system and method of breakaway clutching in a device includes an arm including a first joint and a control unit coupled to the arm and including one or more processors. The control unit switches the first joint from a first state of the first joint to a second state of the first joint in response to an external stimulus applied to the arm exceeding a first threshold and switches the first joint from the second state to the first state in response to a speed associated with the first joint falling below a speed threshold. Movement of the first joint is more restricted in the first state of the first joint than in the second state of the first joint. In some embodiments, the external stimulus applied to the arm is a stimulus detected on the first joint or a stimulus detected on a second joint of the arm.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: April 13, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Daniel Miller, Nitish Swarup, Michael Turner, Arjang M. Hourtash, Paul G. Griffiths, Paul W. Mohr
  • Publication number: 20210015566
    Abstract: A system, e.g., a computer-aided medical system, includes a first link, a second link, a joint, and a dual brake assembly. The first link has a first end portion and a second end portion. The second link has a first end portion and a second end portion. The joint is connected to the second end portion of the first link and to the first end portion of the second link. The dual brake assembly is coupled to the first link and to the second link. The dual brake assembly includes a first brake and a second brake. Braking provided by the dual brake assembly reduces relative motion between the first and second links.
    Type: Application
    Filed: March 29, 2019
    Publication date: January 21, 2021
    Inventors: Bram Gilbert Antoon LAMBRECHT, Arjang M. HOURTASH, Saleh TABANDEH
  • Patent number: 10881479
    Abstract: A cart for supporting one or more instruments during a computer-assisted remote procedure can comprise a base; a steering interface having a portion configured to be grasped by a user; a sensor mechanism configured to detect a force applied to the steering interface by a user; and a switch operable between an engaged position and a disengaged position. The cart may further include a drive system comprising a control module operably coupled to receive an input from the sensor mechanism in response to the force applied to the steering interface and, on the condition that the switch is in the engaged position, to output a movement command based on the received input from the sensor mechanism. A driven wheel mounted to the base of the cart may be configured to impart motion to the cart in response to the movement command.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 5, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. Griffiths, Arjang M. Hourtash, Paul W. Mohr, David W. Robinson, Nitish Swarup, John W. Zabinski, Mark W. Zimmer
  • Publication number: 20200289213
    Abstract: A method of operating a robotic system involves servoing a multitude of joints of the robotic system in a first joint velocity space. The movement of the multitude of joints in the first velocity space moves a remote center or an end effector of the robotic system. The method further involves floating the multitude of joints in a second velocity space. The movement of the multitude of joints in the second velocity space moves the end effector or the remote center, respectively. The method further involves controlling motion of the multitude of joints in a third velocity space. The movement of the multitude of joints in the third velocity space does not move the end effector and does not move the remote center.
    Type: Application
    Filed: April 27, 2020
    Publication date: September 17, 2020
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Nitish Swarup, Arjang M. Hourtash
  • Patent number: 10687908
    Abstract: Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: June 23, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Patent number: 10682191
    Abstract: Devices, systems, and methods for reconfiguring a surgical manipulator by moving the manipulator within a null-space of a kinematic Jacobian of the manipulator arm. In one aspect, in response to receiving a reconfiguration command, the system drives a first set of joints and calculates velocities of the plurality of joints to be within a null-space. The joints are driven according to the reconfiguration command and the calculated movement so as to maintain a desired state of the end effector or a remote center about which an instrument shaft pivots. In another aspect, the joints are also driven according to a calculated end effector or remote center displacing velocities within a null-perpendicular-space of the Jacobian so as to effect the desired reconfiguration concurrently with a desired movement of the end effector or remote center.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: June 16, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Paul W. Mohr, Pushkar Hingwe, Paul Millman, Bruce M. Schena, Roman L. Devengenzo, Scott Luke
  • Publication number: 20200061813
    Abstract: A method for moving a manipulator arm. The manipulator arm includes a movable distal portion, a proximal portion coupled to a base, and joints between the distal portion and the base. The method involves calculating a first movement of the joints in accordance with a first objective. The method further involves calculating a second movement of the joints in accordance with a second objective. The first and the second movements are in a null-space of a Jacobian of the manipulator arm. The method also involves determining a combined movement of the joints by combining the first and second movements while limiting an overall magnitude of the combined movement without changing a direction of the combined movement, and/or combining the first and second movements while limiting a magnitude of the combined movement degree-of-freedom by degree-of-freedom. The method further involves driving the joints to effect the combined movement of the joints.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Applicant: Intuitive Surgical Operations, Inc.
    Inventor: Arjang M. Hourtash
  • Patent number: 10561470
    Abstract: Methods, apparatus, and systems for controlling a plurality of manipulator assemblies of a robotic system. In accordance with a method, a first plurality of sensor signals are received at a plurality of joint space interface elements from a plurality of connector input elements via a first mapping between the joint space interface elements and joints of the first manipulator assembly. The connector input elements are operable to couple to only one manipulator assembly at a time. The received first sensor signals are then processed with a joint controller so as to control the first manipulator assembly. A second plurality of sensor signals are then received from the connector input elements at the joint space interface elements via a second mapping different than the first mapping. The received second sensor signals are then processed with the joint controller so as to control a second manipulator assembly different than the first manipulator assembly.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: February 18, 2020
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Nicola Diolaiti, Pushkar Hingwe, Niels Smaby, Nitish Swarup
  • Publication number: 20190388167
    Abstract: A system and method of breakaway clutching in a device includes an arm including a first joint and a control unit coupled to the arm and including one or more processors. The control unit switches the first joint from a first state of the first joint to a second state of the first joint in response to an external stimulus applied to the arm exceeding a first threshold and switches the first joint from the second state to the first state in response to a speed associated with the first joint falling below a speed threshold. Movement of the first joint is more restricted in the first state of the first joint than in the second state of the first joint.
    Type: Application
    Filed: September 6, 2019
    Publication date: December 26, 2019
    Inventors: Daniel Miller, Nitish Swarup, Michael Turner, Arjang M. Hourtash, Paul G. Griffiths, Paul W. Mohr
  • Patent number: 10513031
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator concurrent with a desired movement of one or more joints of the manipulator according to one or more consolidated null-space objectives. The null-space objectives may include a joint state combination, relative joint states, range of joint states, joint state profile, kinetic energy, clutching movements, collision avoidance movements, singularity avoidance movements, pose or pitch preference, desired manipulator configurations, commanded reconfiguration of the manipulator, and anisotropic emphasis of the joints. Methods include calculating multiple null-space movements according to different null-space objectives, determining an attribute for each and consolidating the null-space movements with a null-space manager using various approaches. The approaches may include applying weighting, scaling, saturation levels, priority, master velocity limiting, saturated limited integration and various combinations thereof.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 24, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Arjang M. Hourtash
  • Publication number: 20190321117
    Abstract: Systems and methods of recentering an input control include a control unit configured to suspend teleoperated control of an end effector by the input control in response to a recentering request, determine a recentering move for the input control to provide positional and orientational harmony between the input control and the end effector, execute the recentering move, and reinstate teleoperated control of the end effector by the input control. In some embodiments, to determine the recentering move the control unit is configured to determine one or more first positions associated with the end effector, map the first positions to a view coordinate system, map the first positions from the view coordinate system to a console workspace coordinate system, and determine one or more second positions for one or more control points on the input control, the control points corresponding to the mapped first positions in the console workspace coordinate system.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 24, 2019
    Inventors: Brandon D. Itkowitz, Michael L. Hanuschik, Paul W. Mohr, Arjang M. Hourtash
  • Patent number: 10449008
    Abstract: A system and method of breakaway clutching in a computer-assisted medical device includes an articulated arm having one or more first joints and a control unit coupled to the articulated arm and having one or more processors. The control unit operates each of the first joints in multiple states. The multiple states include a locked state, wherein movement of respective first joints is restricted, and a float state, wherein movement of the respective first joints is permitted. The control unit further switches one or more second joints selected from the first joints from the locked state to the float state when a stimulus on the second joints exceeds one or more unlock thresholds and switches the second joints from the float state to the locked state when a velocity of each of the second joints is below one or more lock thresholds.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: October 22, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Daniel Miller, Nitish Swarup, Michael Turner, Arjang M. Hourtash, Paul G. Griffiths, Paul W. Mohr
  • Patent number: 10398521
    Abstract: A system and method of recentering imaging devices and input controls includes a medical device having one or more end effectors, an imaging device, one or more input controls for teleoperating the one or more end effectors, and a control unit including one or more processors coupled to the end effectors, the imaging device, and the input controls. The control unit suspends teleoperated control of the end effectors by the input controls in response to a recentering request, determines a view recentering move for the imaging device so that the end effectors are contained within a view space of the imaging device, determines one or more input control recentering moves to provide positional and orientational harmony between each of the input controls and a corresponding one of the end effectors, executes the view and input control recentering moves, and reinstates teleoperated control of the end effectors by the input controls.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 3, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Michael L. Hanuschik, Paul W. Mohr, Arjang M. Hourtash
  • Publication number: 20190262085
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include augmenting a Jacobian so that joint movements calculated. from the Jacobian perform one or more auxiliary tasks and/or desired joint movements concurrent with commanded end effector movement, the one or more auxiliary tasks and/or desired joint movements extending into a null-space. The auxiliary tasks and desired joint movements include inhibiting movement of one or more joints, inhibiting collisions between adjacent manipulators or between a manipulator and a patient surface, commanded reconfiguration of one or more joints, or various other tasks or combinations thereof. Such joint movements may be provided using joint velocities calculated from the pseudo-inverse solution of the: augmented Jacobian. Various configurations for systems utilizing such methods are provided herein.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Arjang M. Hourtash, Nitish Swarup, Pushkar Hingwe
  • Publication number: 20190223966
    Abstract: A computer-assisted teleoperated system includes a pre-load assembly in an instrument manipulator that is under the control of a controller. The controller can automatically cause the preload assembly to engage and disengage a preload. A surgical apparatus includes an instrument manipulator assembly and a sterile adapter assembly. The sterile adapter assembly is mounted in the distal face of the instrument manipulator assembly. When the preload assembly configures the instrument manipulator assembly to apply a preload force on the sterile adapter assembly, the sterile adapter assembly is removable from the distal face of the instrument manipulator. The sterile adapter assembly includes a mechanical sterile adapter assembly removal lockout and a mechanical instrument removal lockout.
    Type: Application
    Filed: June 21, 2017
    Publication date: July 25, 2019
    Inventors: Robert E. Holop, Anthony K. McGrogan, Jeffrey R. Roeder, Daniel H. Gomez, Arjang M. Hourtash, Thomas Brennan-Marquez, Probal Mitra
  • Patent number: 10327855
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include augmenting a Jacobian so that joint movements calculated from the Jacobian perform one or more auxiliary tasks and/or desired joint movements concurrent with commanded end effector movement, the one or more auxiliary tasks and/or desired joint movements extending into a null-space. The auxiliary tasks and desired joint movements include inhibiting movement of one or more joints, inhibiting collisions between adjacent manipulators or between a manipulator and a patient surface, commanded reconfiguration of one or more joints, or various other tasks or combinations thereof. Such joint movements may be provided using joint velocities calculated from the pseudo-inverse solution of the augmented Jacobian. Various configurations for systems utilizing such methods are provided herein.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: June 25, 2019
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Nitish Swarup, Pushkar Hingwe
  • Publication number: 20190183593
    Abstract: Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Publication number: 20190159856
    Abstract: A cart for supporting one or more instruments for a computer-assisted, remote procedure can include a base and a support structure extending from the base and adjustable to different configurations, the support structure being configured to support one or more instruments to perform a remote procedure. The cart can further include a steering interface configured to be grasped by a user and a sensor mechanism configured to detect a force applied to the steering interface. The cart also can include a drive system comprising a control module operably coupled to receive an input from the sensor mechanism in response to the force applied to the steering interface and information about a configuration of the support structure, the control module operably coupled to output a movement command based on the received input from the sensor mechanism and the information about the configuration of the support structure.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 30, 2019
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. GRIFFITHS, Arjang M. HOURTASH, Paul W. MOHR, David W. ROBINSON, Nitish SWARUP, John W. ZABINSKI, Mark W. ZIMMER
  • Publication number: 20190159857
    Abstract: A cart for supporting one or more instruments during a computer-assisted remote procedure can comprise a base; a steering interface having a portion configured to be grasped by a user; a sensor mechanism configured to detect a force applied to the steering interface by a user; and a switch operable between an engaged position and a disengaged position. The cart may further include a drive system comprising a control module operably coupled to receive an input from the sensor mechanism in response to the force applied to the steering interface and, on the condition that the switch is in the engaged position, to output a movement command based on the received input from the sensor mechanism. A driven wheel mounted to the base of the cart may be configured to impart motion to the cart in response to the movement command.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 30, 2019
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. GRIFFITHS, Arjang M. HOURTASH, Paul W. MOHR, David W. ROBINSON, Nitish SWARUP, John W. ZABINSKI, Mark W. ZIMMER
  • Patent number: 10251715
    Abstract: Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: April 9, 2019
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Nitish Swarup