Patents by Inventor Arjang M. Hourtash

Arjang M. Hourtash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10194997
    Abstract: Devices, systems, and methods for avoiding collisions between a manipulator arm and an outer patient surface by moving the manipulator within a null-space. In response to a determination that distance between an avoidance geometry and obstacle surface, corresponding to a manipulator-to-patient distance is less than desired, the system calculates movement of one or more joints or links of the manipulator within a null-space of the Jacobian to increase this distance. The joints are driven according to the reconfiguration command and calculated movement so as to maintain a desired state of the end effector. In one aspect, the joints are also driven according to a calculated end effector displacing movement within a null-perpendicular-space of the Jacobian to effect a desired movement of the end effector or remote center while concurrently avoiding arm-to-patient collisions by moving the joints within the null-space.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: February 5, 2019
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Pushkar Hingwe, Bruce M. Schena, Roman L. Devengenzo
  • Patent number: 10136947
    Abstract: A patient side cart for a teleoperated surgical system can include at least one manipulator arm portion for holding a surgical instrument, a steering interface, and a drive system. The steering interface may be configured to detect a force applied by a user to the steering interface indicating a desired movement for the teleoperated surgical system. The drive system can include at least one driven wheel, a control module, and a model section. The control module may receive as input a signal from the steering interface corresponding to the force applied by the user to the steering interface. The control module may be configured to output a desired movement signal corresponding to the signal received from the steering interface. The model section can include a model of movement behavior of the patient side cart, the model section outputting a movement command output to drive the driven wheel.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: November 27, 2018
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. Griffiths, Arjang M. Hourtash, Paul W. Mohr, David W. Robinson, Nitish Swarup, John W. Zabinski, Mark W. Zimmer
  • Publication number: 20180296284
    Abstract: A system and method of breakaway clutching in a computer-assisted medical device includes an articulated arm having one or more first joints and a control unit coupled to the articulated arm and having one or more processors. The control unit operates each of the first joints in multiple states. The multiple states include a locked state, wherein movement of respective first joints is restricted, and a float state, wherein movement of the respective first joints is permitted. The control unit further switches one or more second joints selected from the first joints from the locked state to the float state when a stimulus on the second joints exceeds one or more unlock thresholds and switches the second joints from the float state to the locked state when a velocity of each of the second joints is below one or more lock thresholds.
    Type: Application
    Filed: June 21, 2018
    Publication date: October 18, 2018
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Daniel Miller, Nitish Swarup, Michael Turner, Arjang M. Hourtash, Paul G. Griffiths, Paul W. Mohr
  • Patent number: 10071479
    Abstract: Devices, systems, and methods for providing a desired movement of one or more joints of a manipulator arm having a plurality of joints with redundant degrees of freedom while effecting commanded movement of a distal end effector of the manipulator. Methods include defining a constraint, such as a network of paths, within a joint space defined by the one or more joints and determining a movement of the plurality of joints within a null-space to track the constraints with the one or more joints. Methods may further include calculating a reconfiguration movement of the joints and modifying the constraints to coincide with a reconfigured position of the one or more joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: September 11, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nitish Swarup, Arjang M. Hourtash, Paul W. Mohr
  • Publication number: 20180243906
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator concurrent with a desired movement of one or more joints of the manipulator according to one or more consolidated null-space objectives. The null-space objectives may include a joint state combination, relative joint states, range of joint states, joint state profile, kinetic energy, clutching movements, collision avoidance movements, singularity avoidance movements, pose or pitch preference, desired manipulator configurations, commanded reconfiguration of the manipulator, and anisotropic emphasis of the joints. Methods include calculating multiple null-space movements according to different null-space objectives, determining an attribute for each and consolidating the null-space movements with a null-space manager using various approaches. The approaches may include applying weighting, scaling, saturation levels, priority, master velocity limiting, saturated limited integration and various combinations thereof.
    Type: Application
    Filed: April 30, 2018
    Publication date: August 30, 2018
    Inventor: Arjang M. Hourtash
  • Patent number: 10052167
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated position of the joints.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: August 21, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Publication number: 20180214225
    Abstract: Devices, systems, and methods for reconfiguring a surgical manipulator by moving the manipulator within a null-space of a kinematic Jacobian of the manipulator arm. In one aspect, in response to receiving a reconfiguration command, the system drives a first set of joints and calculates velocities of the plurality of joints to be within a null-space. The joints are driven according to the reconfiguration command and the calculated movement so as to maintain a desired state of the end effector or a remote center about which an instrument shaft pivots. In another aspect, the joints are also driven according to a calculated end effector or remote center displacing velocities within a null-perpendicular-space of the Jacobian so as to effect the desired reconfiguration concurrently with a desired movement of the end effector or remote center.
    Type: Application
    Filed: March 21, 2018
    Publication date: August 2, 2018
    Inventors: Arjang M. Hourtash, Paul W. Mohr, Pushkar Hingwe, Paul Millman, Bruce M. Schena, Roman L. Devengenzo, Scott Luke
  • Patent number: 10034717
    Abstract: A system and method of breakaway clutching in a computer-assisted medical device includes an articulated arm having one or more first joints and a control unit coupled to the articulated arm and having one or more processors. The control unit operates each of the first joints in multiple states. The multiple states include a locked state, wherein movement of respective first joints is restricted, and a float state, wherein movement of the respective first joints is permitted. The control unit further switches one or more second joints selected from the first joints from the locked state to the float state when a stimulus on the second joints exceeds one or more unlock thresholds and switches the second joints from the float state to the locked state when a velocity of each of the second joints is below one or more lock thresholds.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: July 31, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Daniel Miller, Nitish Swarup, Michael Turner, Arjang M. Hourtash, Paul G. Griffiths, Paul W. Mohr
  • Patent number: 10029367
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator concurrent with a desired movement of one or more joints of the manipulator according to one or more consolidated null-space objectives. The null-space objectives may include a joint state combination, relative joint states, range of joint states, joint state profile, kinetic energy, clutching movements, collision avoidance movements, singularity avoidance movements, pose or pitch preference, desired manipulator configurations, commanded reconfiguration of the manipulator, and anisotropic emphasis of the joints. Methods include calculating multiple null-space movements according to different null-space objectives, determining an attribute for each and consolidating the null-space movements with a null-space manager using various approaches. The approaches may include applying weighting, scaling, saturation levels, priority, master velocity limiting, saturated limited integration and various combinations thereof.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: July 24, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Arjang M. Hourtash
  • Publication number: 20180153630
    Abstract: Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Application
    Filed: January 31, 2018
    Publication date: June 7, 2018
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Patent number: 9949801
    Abstract: Devices, systems, and methods for reconfiguring a surgical manipulator by moving the manipulator within a null-space of a kinematic Jacobian of the manipulator arm. In one aspect, in response to receiving a reconfiguration command, the system drives a first set of joints and calculates velocities of the plurality of joints to be within a null-space. The joints are driven according to the reconfiguration command and the calculated movement so as to maintain a desired state of the end effector or a remote center about which an instrument shaft pivots. In another aspect, the joints are also driven according to a calculated end effector or remote center displacing velocities within a null-perpendicular-space of the Jacobian so as to effect the desired reconfiguration concurrently with a desired movement of the end effector or remote center.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: April 24, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Paul W. Mohr, Pushkar Hingwe, Paul Millman, Bruce Michael Schena, Roman L. Devengenzo, Scott Luke
  • Patent number: 9949799
    Abstract: Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: April 24, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Pushkar Hingwe, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Patent number: 9931172
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include calculating weighted joint velocities using a weighting matrix within the joint space to anisotropically emphasize joint movement within a null-space to provide the desired movement of a first set of joints. Methods may include calculating joint velocities that achieve the desired end effector movement using a pseudo-inverse solution and adjusting the calculated joint velocities using a potential function gradient within the joint space corresponding to the desired movement of the first set of joints. Methods may include use of a weighted pseudo-inverse solution and also an augmented Jacobian solution. One or more auxiliary movements may also be provided using joint velocities calculated from the pseudo-inverse solution. Various configurations for systems utilizing such methods are provided herein.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: April 3, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Patent number: 9907619
    Abstract: Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: March 6, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Patent number: 9861447
    Abstract: Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: January 9, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Amy E. Kerdok, Michael Turner
  • Patent number: 9844415
    Abstract: Devices, systems, and methods for providing increased range of movement of the end effector of a manipulator arm having a plurality of joints with redundant degrees of freedom. Methods include defining a position-based constraint within a joint space defined by the at least one joint, determining a movement of the joints along the constraint within a null-space and driving the joints according to a calculated movement to effect the commanded movement while providing an increased end effector range of movement, particularly as one or more joints approach a respective joint limit within the joint space.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: December 19, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Arjang M. Hourtash
  • Publication number: 20170296277
    Abstract: Devices, systems, and methods for avoiding collisions between a manipulator arm and an outer patient surface by moving the manipulator within a null-space. In response to a determination that distance between an avoidance geometry and obstacle surface, corresponding to a manipulator-to-patient distance is less than desired, the system calculates movement of one or more joints or links of the manipulator within a null-space of the Jacobian to increase this distance. The joints are driven according to the reconfiguration command and calculated movement so as to maintain a desired state of the end effector. In one aspect, the joints are also driven according to a calculated end effector displacing movement within a null-perpendicular-space of the Jacobian to effect a desired movement of the end effector or remote center while concurrently avoiding arm-to-patient collisions by moving the joints within the null-space.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 19, 2017
    Inventors: Arjang M. Hourtash, Pushkar Hingwe, Bruce M. Schena, Roman L. Devengenzo
  • Publication number: 20170273748
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include augmenting a Jacobian so that joint movements calculated from the Jacobian perform one or more auxiliary tasks and/or desired joint movements concurrent with commanded end effector movement, the one or more auxiliary tasks and/or desired joint movements extending into a null-space. The auxiliary tasks and desired joint movements include inhibiting movement of one or more joints, inhibiting collisions between adjacent manipulators or between a manipulator and a patient surface, commanded reconfiguration of one or more joints, or various other tasks or combinations thereof. Such joint movements may be provided using joint velocities calculated from the pseudo-inverse solution of the augmented Jacobian. Various configurations for systems utilizing such methods are provided herein.
    Type: Application
    Filed: September 17, 2015
    Publication date: September 28, 2017
    Inventors: Arjang M. Hourtash, Nitish Swarup, Pushkar Hingwe
  • Publication number: 20170258534
    Abstract: Devices, systems, and methods for avoiding collisions between manipulator arms using a null-space are provided. In one aspect, the system calculates an avoidance movement using a relationship between reference geometries of the multiple manipulators to maintain separation between reference geometries. In certain embodiments, the system determines a relative state between adjacent reference geometries, determines an avoidance vector between reference geometries, and calculates an avoidance movement of one or more manipulators within a null-space of the Jacobian based on the relative state and avoidance vector. The joints may be driven according to the calculated avoidance movement while maintaining a desired state of the end effector or a remote center location about which an instrument shaft pivots and may be concurrently driven according to an end effector displacing movement within a null-perpendicular-space of the Jacobian so as to effect a desired movement of the end effector or remote center.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: Arjang M. Hourtash, Pushkar Hingwe, Bruce Michael Schena, Roman L. Devengenzo
  • Patent number: 9757203
    Abstract: Devices, systems, and methods for avoiding collisions between a manipulator arm and an outer patient surface by moving the manipulator within a null-space. In response to a determination that distance between an avoidance geometry and obstacle surface, corresponding to a manipulator-to-patient distance is less than desired, the system calculates movement of one or more joints or links of the manipulator within a null-space of the Jacobian to increase this distance. The joints are driven according to the reconfiguration command and calculated movement so as to maintain a desired state of the end effector. In one aspect, the joints are also driven according to a calculated end effector displacing movement within a null-perpendicular-space of the Jacobian to effect a desired movement of the end effector or remote center while concurrently avoiding arm-to-patient collisions by moving the joints within the null-space.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: September 12, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Pushkar Hingwe, Bruce Michael Schena, Roman L. Devengenzo