Patents by Inventor Arjang M. Hourtash

Arjang M. Hourtash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160175061
    Abstract: Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
    Type: Application
    Filed: February 29, 2016
    Publication date: June 23, 2016
    Inventors: Pushkar Hingwe, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Patent number: 9345544
    Abstract: Devices, systems, and methods for avoiding collisions between manipulator arms using a null-space are provided. In one aspect, the system calculates an avoidance movement using a relationship between reference geometries of the multiple manipulators to maintain separation between reference geometries. In certain embodiments, the system determines a relative state between adjacent reference geometries, determines an avoidance vector between reference geometries, and calculates an avoidance movement of one or more manipulators within a null-space of the Jacobian based on the relative state and avoidance vector. The joints may be driven according to the calculated avoidance movement while maintaining a desired state of the end effector or a remote center location about which an instrument shaft pivots and may be concurrently driven according to an end effector displacing movement within a null-perpendicular-space of the Jacobian so as to effect a desired movement of the end effector or remote center.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: May 24, 2016
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Pushkar Hingwe, Bruce Michael Schena, Roman L. Devengenzo
  • Patent number: 9295525
    Abstract: Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: March 29, 2016
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Pushkar Hingwe, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Patent number: 9272416
    Abstract: Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: March 1, 2016
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Amy E. Kerdok, Michael Turner
  • Publication number: 20160045270
    Abstract: Devices, systems, and methods for cancelling movement one or more joints of a tele-surgical manipulator to effect manipulation movement of an end effector. Methods include calculating movement of joints within a null-perpendicular space to effect desired end effector movement while calculating movement of one or more locked joints within a null-space to cancel the movement of the locked joints within the null-perpendicular-space. Methods may further include calculating movement of one or more joints to effect an auxiliary movement or a reconfiguration movement that may include movement of one or more locked joints. The auxiliary and reconfiguration movements may be overlaid the manipulation movement of the joints to allow movement of the locked joints to effect the auxiliary movement or reconfiguration movement, while the movement of the locked joints to effect manipulation is canceled. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Application
    Filed: July 17, 2015
    Publication date: February 18, 2016
    Inventors: Arjang M. Hourtash, Pushkar Hingwe
  • Patent number: 9259280
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated position of the joints.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: February 16, 2016
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Publication number: 20160022360
    Abstract: A patient side cart for a teleoperated surgical system can include at least one manipulator arm portion for holding a surgical instrument, a steering interface, and a drive system. The steering interface may be configured to detect a force applied by a user to the steering interface indicating a desired movement for the teleoperated surgical system. The drive system can include at least one driven wheel, a control module, and a model section. The control module may receive as input a signal from the steering interface corresponding to the force applied by the user to the steering interface. The control module may be configured to output a desired movement signal corresponding to the signal received from the steering interface. The model section can include a model of movement behavior of the patient side cart, the model section outputting a movement command output to drive the driven wheel.
    Type: Application
    Filed: July 24, 2015
    Publication date: January 28, 2016
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. GRIFFITHS, Arjang M. HOURTASH, Paul W. MOHR, David W. ROBINSON, Nitish SWARUP, John W. ZABINSKI, Mark W. ZIMMER
  • Patent number: 9101348
    Abstract: A patient side cart for a teleoperated surgical system can include at least one manipulator arm portion for holding a surgical instrument, a steering interface, and a drive system. The steering interface may be configured to detect a force applied by a user to the steering interface indicating a desired movement for the teleoperated surgical system. The drive system can include at least one driven wheel, a control module, and a model section. The control module may receive as input a signal from the steering interface corresponding to the force applied by the user to the steering interface. The control module may be configured to output a desired movement signal corresponding to the signal received from the steering interface. The model section can include a model of movement behavior of the patient side cart, the model section outputting a movement command output to drive the driven wheel.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 11, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. Griffiths, Arjang M. Hourtash, Paul W. Mohr, David Robinson, Nitish Swarup, John Zabinski, Mark Zimmer
  • Publication number: 20140358161
    Abstract: Devices, systems, and methods for reconfiguring a surgical manipulator by moving the manipulator within a null-space of a kinematic Jacobian of the manipulator arm. In one aspect, in response to receiving a reconfiguration command, the system drives a first set of joints and calculates velocities of the plurality of joints to be within a null-space. The joints are driven according to the reconfiguration command and the calculated movement so as to maintain a desired state of the end effector or a remote center about which an instrument shaft pivots. In another aspect, the joints are also driven according to a calculated end effector or remote center displacing velocities within a null-perpendicular-space of the Jacobian so as to effect the desired reconfiguration concurrently with a desired movement of the end effector or remote center.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Arjang M. HOURTASH, Paul W. Mohr, Pushkar Hingwe, Paul Millman, Bruce Michael Schena, Roman L. Devengenzo, Scott Luke
  • Publication number: 20140297130
    Abstract: A patient side cart for a teleoperated surgical system can include at least one manipulator arm portion for holding a surgical instrument, a steering interface, and a drive system. The steering interface may be configured to detect a force applied by a user to the steering interface indicating a desired movement for the teleoperated surgical system. The drive system can include at least one driven wheel, a control module, and a model section. The control module may receive as input a signal from the steering interface corresponding to the force applied by the user to the steering interface. The control module may be configured to output a desired movement signal corresponding to the signal received from the steering interface. The model section can include a model of movement behavior of the patient side cart, the model section outputting a movement command output to drive the driven wheel.
    Type: Application
    Filed: March 13, 2014
    Publication date: October 2, 2014
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. GRIFFITHS, Arjang M. HOURTASH, Paul W. MOHR, David ROBINSON, Nitish SWARUP, John ZABINSKI, Mark ZIMMER
  • Publication number: 20140052152
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated position of the joints.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Publication number: 20140052298
    Abstract: Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Amy E. Kerdok, Michael Turner
  • Publication number: 20140052151
    Abstract: Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Pushkar Hingwe, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Publication number: 20130325030
    Abstract: Devices, systems, and methods for avoiding collisions between manipulator arms using a null-space are provided. In one aspect, the system calculates an avoidance movement using a relationship between reference geometries of the multiple manipulators to maintain separation between reference geometries. In certain embodiments, the system determines a relative state between adjacent reference geometries, determines an avoidance vector between reference geometries, and calculates an avoidance movement of one or more manipulators within a null-space of the Jacobian based on the relative state and avoidance vector. The joints may be driven according to the calculated avoidance movement while maintaining a desired state of the end effector or a remote center location about which an instrument shaft pivots and may be concurrently driven according to an end effector displacing movement within a null-perpendicular-space of the Jacobian so as to effect a desired movement of the end effector or remote center.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Arjang M. HOURTASH, Pushkar Hingwe, Bruce Michael Schena, Roman L. Devengenzo
  • Publication number: 20130325029
    Abstract: Devices, systems, and methods for avoiding collisions between a manipulator arm and an outer patient surface by moving the manipulator within a null-space. In response to a determination that distance between an avoidance geometry and obstacle surface, corresponding to a manipulator-to-patient distance is less than desired, the system calculates movement of one or more joints or links of the manipulator within a null-space of the Jacobian to increase this distance. The joints are driven according to the reconfiguration command and calculated movement so as to maintain a desired state of the end effector. In one aspect, the joints are also driven according to a calculated end effector displacing movement within a null-perpendicular-space of the Jacobian to effect a desired movement of the end effector or remote center while concurrently avoiding arm-to-patient collisions by moving the joints within the null-space.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Arjang M. Hourtash, Pushkar Hingwe, Bruce Michael Schena, Roman L. Devengenzo
  • Patent number: 5901952
    Abstract: Briefly and in general terms a paper size adjusting apparatus for a paper supply tray. The apparatus includes a paper supply tray having a bottom wall, left and right side walls, a front wall and a rear wall; a side wall paper guide laterally movable with respect to and connected to the supply tray; and a front wall paper guide longitudinally moveable with respect to and connected to the supply tray. The apparatus further includes a mechanical connector that engages both the paper guides in a manner such that the movement of one of the guides generates a corresponding movement of the other guide. The apparatus provides for a coupled width and length adjustment thereby allowing the user to conform both dimensions with only one manipulation.
    Type: Grant
    Filed: September 12, 1996
    Date of Patent: May 11, 1999
    Assignee: Hewlett-Packard Company
    Inventor: Arjang M. Hourtash