Patents by Inventor Arjun Singh

Arjun Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190314574
    Abstract: Percutaneous therapy or drug delivery devices are described herein. The device can include one or multiple lumens inside a cannula or catheter body. The device can include features for reducing or preventing backflow or reflux of infusate along the device insertion track, such as one or more bullet noses, over tubes, and/or micro-tips. The device can be used in any of a variety of treatment methods, including to inject cancer therapy medicinal products directly into pulmonary tumors or tumors located in other regions of the body. The device can include features to keep the distal tip secure during patient respiration or during other patient movement, and can reduce the incidence of reflux during therapy delivery.
    Type: Application
    Filed: February 27, 2019
    Publication date: October 17, 2019
    Inventors: Katelyn Perkins-Neaton, Gregory Eberl, Morgan Brophy, Andrew East, PJ Anand, Deep Arjun Singh, Loredana Guseila, Jon Freund, Derek Peter
  • Patent number: 10441770
    Abstract: Systems and methods for delivering a drug or other therapy over an extended period of time (e.g., several hours, days, weeks, months, years, and so forth) are disclosed herein, as are systems and methods for monitoring various parameters associated with the treatment of a patient. Systems and methods are also disclosed herein that generally involve CED devices with various features for reducing or preventing backflow.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: October 15, 2019
    Assignee: Alcyone Lifesciences, Inc.
    Inventors: Deep Arjun Singh, PJ Anand, Andrew East
  • Patent number: 10434251
    Abstract: The methods, systems, and devices disclosed herein generally involve convection-enhanced delivery of drugs to a target region within a patient. Microfluidic catheter devices are disclosed that are particularly suitable for targeted delivery of drugs via convection, including devices capable of multi-directional drug delivery, devices that control fluid pressure and velocity using the venturi effect, and devices that include conformable balloons. Methods of treating various diseases using such devices are also disclosed, including methods of treating cerebral and spinal cavernous malformations, cavernomas, and hemangiomas, methods of treating neurological diseases, methods of treatment using multiple microfluidic delivery devices, methods of treating hearing disorders, methods of spinal drug delivery using microfluidic devices, and methods of delivering stem cells and therapeutics during fetal surgery. Methods of manufacturing such devices are also disclosed.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: October 8, 2019
    Assignee: Alcyone Lifesciences, Inc.
    Inventors: PJ Anand, Deep Arjun Singh
  • Patent number: 10406285
    Abstract: Drug delivery systems and methods are disclosed herein. In some embodiments, a drug delivery system can be configured to deliver a drug to a patient in coordination with a physiological parameter of the patient (e.g., the patient's natural cerebrospinal fluid (CSF) pulsation or the patient's heart or respiration rate). In some embodiments, a drug delivery system can be configured to use a combination of infusion and aspiration to control delivery of a drug to a patient. Catheters, controllers, and other components for use in the above systems are also disclosed, as are various methods of using such systems.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: September 10, 2019
    Assignee: ALCYONE LIFESCIENCES, INC.
    Inventors: PJ Anand, Morgan Brophy, Deep Arjun Singh, Greg Eberl
  • Publication number: 20190255284
    Abstract: Catheters, catheter ports, connectors, and related methods are disclosed herein, e.g., for drug delivery to a subject. The catheters and catheter ports can include various features to facilitate dosing protocols that require multiple injections, and/or for reducing or eliminating damage that may occur to the catheter, port, or patient tissue as a result of multiple injections.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 22, 2019
    Inventors: Jonathan Freund, PJ Anand, Deep Arjun Singh, Gregory Eberl
  • Patent number: 10363394
    Abstract: Systems and methods are disclosed herein that generally involve CED devices with various features for reducing or preventing backflow. In some embodiments, CED devices include a tissue-receiving space disposed proximal to a distal fluid outlet. Tissue can be compressed into or pinched/pinned by the tissue-receiving space as the device is inserted into a target region of a patient, thereby forming a seal that reduces or prevents proximal backflow of fluid ejected from the outlet beyond the tissue-receiving space. In some embodiments, CED devices include a bullet-shaped nose proximal to a distal fluid outlet. The bullet-shaped nose forms a good seal with surrounding tissue and helps reduce or prevent backflow of infused fluid.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: July 30, 2019
    Assignee: Alcyone Lifesciences, Inc.
    Inventors: Deep Arjun Singh, P J Anand, Blake Sama
  • Publication number: 20190160254
    Abstract: Drug delivery systems and methods are disclosed herein. In some embodiments, a drug delivery system can be configured to deliver a drug to a patient in coordination with a physiological parameter of the patient (e.g., the patient's natural cerebrospinal fluid (CSF) pulsation or the patient's heart or respiration rate). In some embodiments, a drug delivery system can be configured to use a combination of infusion and aspiration to control delivery of a drug to a patient. Catheters, controllers, and other components for use in the above systems are also disclosed, as are various methods of using such systems.
    Type: Application
    Filed: November 15, 2018
    Publication date: May 30, 2019
    Inventors: PJ Anand, Morgan Brophy, Deep Arjun Singh, Greg Eberl, Ayesha Arzumand, Stela Moura, Andrew East, Jonathan Freund
  • Patent number: 10303048
    Abstract: The present disclosure relates to a patterned structure, the structure comprising: i) a substrate, ii) a first layer on top of the substrate, comprising a filler material and a guiding material, wherein at least a top surface of the first layer comprises one or more zones of filler material and one or more zones of guiding material, and iii) a second layer on top of the first layer comprising a pattern of a first material, the pattern being either aligned or anti-aligned with the underlying one or more zones of guiding material; wherein the first material comprises a metal or a ceramic material and wherein the guiding material and the filler material either both comprise or both do not comprise the metal or ceramic material.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: May 28, 2019
    Assignees: IMEC VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, KU LEUVEN R&D
    Inventors: Boon Teik Chan, Arjun Singh, Safak Sayan
  • Publication number: 20190157086
    Abstract: A method for forming a film with an annealing step and a deposition step is disclosed. The method comprises an annealing step for inducing self-assembly or alignment within a polymer. The method also comprises a selective deposition step in order to enable selective deposition on a polymer.
    Type: Application
    Filed: January 23, 2019
    Publication date: May 23, 2019
    Inventors: Jan Willem MAES, Werner KNAEPEN, Roel GRONHEID, Arjun SINGH
  • Publication number: 20190143038
    Abstract: A therapy specific, pre-programmed, hand-held auto-injection device for delivering a drug to a patient includes a housing, a plurality of syringes carried by the housing, at least one actuator disposed within the housing coupled to the plurality of syringes, and a controller disposed within the housing and communicatively coupled to the at least one actuator. The controller is configured to receive an infusion and aspiration profile, which includes an infusion and aspiration protocol for controlling at least one of the plurality of syringes. The controller is also configured to operate the at least one actuator based on the infusion and aspiration protocol by either expelling a fluid from a respective barrel of the plurality of syringes into the infusion and aspiration location or drawing a fluid from the infusion and aspiration location into a respectively barrel of the plurality of syringes.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 16, 2019
    Inventors: Pj Anand, Deep Arjun Singh, Jonathan Freund, Katelyn Perkins-Neaton, Thomas T. Washburn
  • Publication number: 20190143037
    Abstract: A method of delivering a drug to a patient using a therapy specific, pre-programmed auto-injection device includes positioning the hand-held device proximate to an infusion and aspiration location of the patient, and receiving, at a controller disposed within the housing, an infusion and aspiration profile. The infusion and aspiration profile including an infusion and aspiration protocol for controlling at least one of a plurality of syringes partially disposed within the housing. The method also includes operating at least one actuator coupled to the plurality of syringes according to the infusion and aspiration protocol, causing the syringes to expel a fluid from a respective barrel of the plurality of syringe into the infusion and aspiration location or causing the syringes to draw a fluid from the infusion and aspiration location into a respective barrel of the plurality of syringes.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 16, 2019
    Inventors: PJ Anand, Deep Arjun Singh, Jonathan Freund, Katelyn Perkins-Neaton, Thomas T. Washburn
  • Patent number: 10204782
    Abstract: A method for forming a film with an annealing step and a deposition step is disclosed. The method comprises an annealing step for inducing self-assembly or alignment within a polymer. The method also comprises a selective deposition step in order to enable selective deposition on a polymer.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: February 12, 2019
    Assignees: IMEC vzw, ASM IP HOLDING B.V.
    Inventors: Jan Willem Maes, Werner Knaepen, Roel Gronheid, Arjun Singh
  • Publication number: 20190009055
    Abstract: Systems and methods are disclosed herein that generally involve CED devices with various features for reducing or preventing backflow. In some embodiments, CED devices include a tissue-receiving space disposed proximal to a distal fluid outlet. Tissue can be compressed into or pinched/pinned by the tissue-receiving space as the device is inserted into a target region of a patient, thereby forming a seal that reduces or prevents proximal backflow of fluid ejected from the outlet beyond the tissue-receiving space. In some embodiments, CED devices include a bullet-shaped nose proximal to a distal fluid outlet. The bullet-shaped nose forms a good seal with surrounding tissue and helps reduce or prevent backflow of infused fluid.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 10, 2019
    Applicant: Alcyone Lifesciences, Inc.
    Inventors: Deep Arjun Singh, PJ Anand, Blake Sama
  • Patent number: 10145164
    Abstract: A vehicle tailgate assembly includes a tailgate adapted to pivotally latch to a vehicle cargo box. A hinge pivot is coupled to the tailgate and includes an electromagnetic cylinder and a vane hub positioned within the cylinder and coupled to at least one of the tailgate and the cargo box. The vane hub is configured to rotate within the cylinder. A vane is coupled to the vane hub. A magnetorheological fluid is positioned around the vane.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: December 4, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Arjun Singh, Bhupenda A. Patel, Leszek Derbis
  • Patent number: 10079145
    Abstract: The present disclosure relates to a method for pattern formation on a substrate. An example embodiment includes a method for pattern formation. The method includes providing a photoresist layer on a composite substrate. The method also includes patterning the photoresist layer by lithography to define a plurality of parallel stripe photoresist structures. The method further includes providing a block copolymer on and along the composite substrate, in between the parallel stripe photoresist structures. The block copolymer includes a first component and a second component. The method additionally includes subjecting the block copolymer to predetermined conditions to cause phase separation of the first component and the second component. In addition, the method includes performing a sequential infiltration synthesis process. Still further, the method includes selectively removing the parallel stripe photoresist structures. Additionally, the method includes defining a core stripe structure.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: September 18, 2018
    Assignees: IMEC VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, KU LEUVEN R&D
    Inventors: Boon Teik Chan, Arjun Singh
  • Patent number: 10065016
    Abstract: Systems and methods are disclosed herein that generally involve CED devices with various features for reducing or preventing backflow. In some embodiments, CED devices include a tissue-receiving space disposed proximal to a distal fluid outlet. Tissue can be compressed into or pinched/pinned by the tissue-receiving space as the device is inserted into a target region of a patient, thereby forming a seal that reduces or prevents proximal backflow of fluid ejected from the outlet beyond the tissue-receiving space. In some embodiments, CED devices include a bullet-shaped nose proximal to a distal fluid outlet. The bullet-shaped nose forms a good seal with surrounding tissue and helps reduce or prevent backflow of infused fluid.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: September 4, 2018
    Assignee: ALCYONE LIFESCIENCES, INC.
    Inventors: Deep Arjun Singh, Pj Anand, Blake Sama
  • Patent number: 10036051
    Abstract: Nucleic acid sequences encoding chimeric polypeptides that exhibit enhanced cellulase activities are disclosed herein. These nucleic acids may be expressed in hosts such as fungi, which in turn may be cultured to produce chimeric polypeptides. Also disclosed are chimeric polypeptides and their use in the degradation of cellulosic materials.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: July 31, 2018
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: William S. Adney, Gregg T. Beckham, Eric Jarvis, Michael E. Himmel, Stephen R. Decker, Jeffrey G. Linger, Kara Podkaminer, John O. Baker, Larry Taylor, II, Qi Xu, Arjun Singh
  • Publication number: 20180193595
    Abstract: Systems and methods are disclosed herein that generally involve CED devices with various features for reducing or preventing backflow. In some embodiments, CED devices include a tissue-receiving space disposed proximal to a distal fluid outlet. Tissue can be compressed into or pinched/pinned by the tissue-receiving space as the device is inserted into a target region of a patient, thereby forming a seal that reduces or prevents proximal backflow of fluid ejected from the outlet beyond the tissue-receiving space. In some embodiments, CED devices include a bullet-shaped nose proximal to a distal fluid outlet. The bullet-shaped nose forms a good seal with surrounding tissue and helps reduce or prevent backflow of infused fluid.
    Type: Application
    Filed: September 20, 2017
    Publication date: July 12, 2018
    Applicant: ALCYONE LIFESCIENCES, INC.
    Inventors: Deep Arjun Singh, PJ Anand, Blake Sama
  • Publication number: 20180185058
    Abstract: Drug delivery systems and methods are disclosed herein. In some embodiments, a drug delivery system can be configured to deliver a drug to a patient in coordination with a physiological parameter of the patient (e.g., the patient's natural cerebrospinal fluid (CSF) pulsation or the patient's heart or respiration rate). In some embodiments, a drug delivery system can be configured to use a combination of infusion and aspiration to control delivery of a drug to a patient. Catheters, controllers, and other components for use in the above systems are also disclosed, as are various methods of using such systems.
    Type: Application
    Filed: December 21, 2017
    Publication date: July 5, 2018
    Applicant: Alcyone Lifesciences, Inc.
    Inventors: PJ Anand, Morgan Brophy, Deep Arjun Singh, Greg Eberl, Ayesha Arzumand, Stela Moura
  • Publication number: 20180173109
    Abstract: An example embodiment relates to a method for making a mask layer. The method may include providing a patterned layer on a substrate, the patterned layer including at least a first set of lines of an organic material of a first nature, the lines having a line height, a first line width roughness, and being separated either by voids or by a material of a second nature. The method may further include infiltrating at least a top portion of the first set of lines with a metal or ceramic material. The method may further include removing the organic material by oxidative plasma etching, thereby forming a second set of lines of metal or ceramic material on the substrate, the second set of lines having a second line width roughness, smaller than the first line width roughness.
    Type: Application
    Filed: November 15, 2017
    Publication date: June 21, 2018
    Applicants: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Roel Gronheid, Arjun Singh, Werner Knaepen