Patents by Inventor Ashonita A. Chavan

Ashonita A. Chavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200328221
    Abstract: Some embodiments include an integrated assembly having first electrodes with top surfaces, and with sidewall surfaces extending downwardly from the top surfaces. The first electrodes are solid pillars. Insulative material is along the sidewall surfaces of the first electrodes. Second electrodes extend along the sidewall surfaces of the first electrodes and are spaced from the sidewall surfaces by the insulative material. Conductive-plate-material extends across the first and second electrodes, and couples the second electrodes to one another. Leaker-devices electrically couple the first electrodes to the conductive-plate-material and are configured to discharge at least a portion of excess charge from the first electrodes to the conductive-plate-material. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 15, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Alessandro Calderoni, Beth R. Cook, Durai Vishak Nirmal Ramaswamy, Ashonita A. Chavan
  • Patent number: 10790145
    Abstract: A method includes forming a first amorphous material, forming a second amorphous material over and in contact with the first material, removing a portion of the second material and the first material to form pillars, and exposing the materials to a temperature between a crystallization temperature of the first material and a crystallization temperature of the second material. The first material and the second material each comprise at least one element selected from the group consisting of silicon and germanium. The second material exhibits a crystallization temperature different than a crystallization temperature of the first material. Semiconductor structures, memory devices, and systems are also disclosed.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: September 29, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy, Michael Mutch, Sameer Chhajed
  • Patent number: 10748914
    Abstract: A method used in forming an electronic component comprising conductive material and ferroelectric material comprises forming a non-ferroelectric metal oxide-comprising insulator material over a substrate. A composite stack comprising at least two different composition non-ferroelectric metal oxides is formed over the substrate. The composite stack has an overall conductivity of at least 1×102 Siemens/cm. The composite stack is used to render the non-ferroelectric metal oxide-comprising insulator material to be ferroelectric. Conductive material is formed over the composite stack and the insulator material. Ferroelectric capacitors and ferroelectric field effect transistors independent of method of manufacture are also disclosed.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: August 18, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy, Manuj Nahar
  • Patent number: 10741567
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: August 11, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita Chavan
  • Publication number: 20200243267
    Abstract: Some embodiments include an apparatus having horizontally-spaced bottom electrodes supported by a supporting structure. Leaker device material is directly against the bottom electrodes. Insulative material is over the bottom electrodes, and upper electrodes are over the insulative material. Plate material extends across the upper electrodes and couples the upper electrodes to one another. The plate material is directly against the leaker device material. The leaker device material electrically couples the bottom electrodes to the plate material, and may be configured to discharge at least a portion of excess charge from the bottom electrodes to the plate material. Some embodiments include methods of forming apparatuses which include capacitors having bottom electrodes and top electrodes, with the top electrodes being electrically coupled to one another through a conductive plate. Leaker devices are formed to electrically couple the bottom electrodes to the conductive plate.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Beth R. Cook, Manuj Nahar, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200235111
    Abstract: Some embodiments include an integrated assembly having first electrodes with top surfaces, and with sidewall surfaces extending downwardly from the top surfaces. The first electrodes are solid pillars. Insulative material is along the sidewall surfaces of the first electrodes. Second electrodes extend along the sidewall surfaces of the first electrodes and are spaced from the sidewall surfaces by the insulative material. Conductive-plate-material extends across the first and second electrodes, and couples the second electrodes to one another. Leaker-devices electrically couple the first electrodes to the conductive-plate-material and are configured to discharge at least a portion of excess charge from the first electrodes to the conductive-plate-material. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 23, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Alessandro Calderoni, Beth R. Cook, Durai Vishak Nirmal Ramaswamy, Ashonita A. Chavan
  • Publication number: 20200227423
    Abstract: Some embodiments include a ferroelectric device comprising ferroelectric material adjacent an electrode. The device includes a semiconductor material-containing region along a surface of the ferroelectric material nearest the electrode. The semiconductor material-containing region has a higher concentration of semiconductor material than a remainder of the ferroelectric material. The device may be, for example, a transistor or a capacitor. The device may be incorporated into a memory array. Some embodiments include a method of forming a ferroelectric capacitor. An oxide-containing ferroelectric material is formed over a first electrode. A second electrode is formed over the oxide-containing ferroelectric material. A semiconductor material-enriched portion of the oxide-containing ferroelectric material is formed adjacent the second electrode.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Ramanathan Gandhi, Beth R. Cook, Durai Vishak Nirmal Ramaswamy
  • Patent number: 10707220
    Abstract: Ferroelectric memory and methods of forming the same are provided. An example memory cell can include a buried recessed access device (BRAD) formed in a substrate and a ferroelectric capacitor formed on the BRAD.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: July 7, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Alessandro Calderoni, D. V. Nirmal Ramaswamy
  • Publication number: 20200203357
    Abstract: A method of forming an array of capacitors comprises forming a plurality of horizontally-spaced groups that individually comprise a plurality of horizontally-spaced lower capacitor electrodes having a capacitor insulator thereover. Adjacent of the groups are horizontally spaced farther apart than are adjacent of the lower capacitor electrodes within the groups. A void space is between the adjacent groups. An upper capacitor electrode material is formed in the void space and in the groups over the capacitor insulator and the lower capacitor electrodes. The upper capacitor electrode material in the void space connects the upper capacitor electrode material that is in the adjacent groups relative to one another. The upper capacitor electrode material less-than-fills the void space. At least a portion of the upper capacitor electrode material is removed from the void space to disconnect the upper capacitor electrode material in the adjacent groups from being connected relative to one another.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 25, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Sameer Chhajed, Ashonita A. Chavan, Mark Fischer, Durai Vishak Nirmal Ramaswamy
  • Patent number: 10650978
    Abstract: Some embodiments include an apparatus having horizontally-spaced bottom electrodes supported by a supporting structure. Leaker device material is directly against the bottom electrodes. Insulative material is over the bottom electrodes, and upper electrodes are over the insulative material. Plate material extends across the upper electrodes and couples the upper electrodes to one another. The plate material is directly against the leaker device material. The leaker device material electrically couples the bottom electrodes to the plate material, and may be configured to discharge at least a portion of excess charge from the bottom electrodes to the plate material. Some embodiments include methods of forming apparatuses which include capacitors having bottom electrodes and top electrodes, with the top electrodes being electrically coupled to one another through a conductive plate. Leaker devices are formed to electrically couple the bottom electrodes to the conductive plate.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: May 12, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Beth R. Cook, Manuj Nahar, Durai Vishak Nirmal Ramaswamy
  • Patent number: 10622366
    Abstract: A method of forming an array comprising pairs of vertically opposed capacitors comprises forming a conductive lining in individual capacitor openings in support material. An elevational mid-portion of individual of the conductive linings is removed to form an upper capacitor electrode lining and a lower capacitor electrode lining that are elevationally separate and spaced from one another in the individual capacitor openings. A capacitor insulator is formed laterally outward of the upper and lower capacitor electrode linings. Conductive material is formed laterally outward of the capacitor insulator to comprise a shared capacitor electrode that is shared by vertically opposed capacitors in individual of the pairs of vertically opposed capacitors. Other methods and structure independent of method of manufacture are disclosed.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: April 14, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200075330
    Abstract: A method includes forming a first amorphous material, forming a second amorphous material over and in contact with the first material, removing a portion of the second material and the first material to form pillars, and exposing the materials to a temperature between a crystallization temperature of the first material and a crystallization temperature of the second material. The first material and the second material each comprise at least one element selected from the group consisting of silicon and germanium. The second material exhibits a crystallization temperature different than a crystallization temperature of the first material. Semiconductor structures, memory devices, and systems are also disclosed.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 5, 2020
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy, Michael Mutch, Sameer Chhajed
  • Publication number: 20200020708
    Abstract: A method of forming an array comprising pairs of vertically opposed capacitors comprises forming a conductive lining in individual capacitor openings in support material. An elevational mid-portion of individual of the conductive linings is removed to form an upper capacitor electrode lining and a lower capacitor electrode lining that are elevationally separate and spaced from one another in the individual capacitor openings. A capacitor insulator is formed laterally outward of the upper and lower capacitor electrode linings. Conductive material is formed laterally outward of the capacitor insulator to comprise a shared capacitor electrode that is shared by vertically opposed capacitors in individual of the pairs of vertically opposed capacitors. Other methods and structure independent of method of manufacture are disclosed.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy
  • Patent number: 10438643
    Abstract: Methods of operating a ferroelectric memory cell. The method includes applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell having a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. Another of the positive bias voltage and the negative bias voltage is applied to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Related ferroelectric memory cells include a ferroelectric material exhibiting asymmetric switching properties.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: October 8, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Publication number: 20190189626
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita Chavan
  • Publication number: 20190189357
    Abstract: Some embodiments include an apparatus having horizontally-spaced bottom electrodes supported by a supporting structure. Leaker device material is directly against the bottom electrodes. Insulative material is over the bottom electrodes, and upper electrodes are over the insulative material. Plate material extends across the upper electrodes and couples the upper electrodes to one another. The plate material is directly against the leaker device material. The leaker device material electrically couples the bottom electrodes to the plate material, and may be configured to discharge at least a portion of excess charge from the bottom electrodes to the plate material. Some embodiments include methods of forming apparatuses which include capacitors having bottom electrodes and top electrodes, with the top electrodes being electrically coupled to one another through a conductive plate. Leaker devices are formed to electrically couple the bottom electrodes to the conductive plate.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Ashonita A. Chavan, Beth R. Cook, Manuj Nahar, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20190189627
    Abstract: A ferroelectric memory device includes a plurality of memory cells. Each of the memory cells comprises at least one electrode and a ferroelectric crystalline material disposed proximate the at least one electrode. The ferroelectric crystalline material is polarizable by an electric field capable of being generated by electrically charging the at least one electrode. The ferroelectric crystalline material comprises a polar and chiral crystal structure without inversion symmetry through an inversion center. The ferroelectric crystalline material does not consist essentially of an oxide of at least one of hafnium (Hf) and zirconium (Zr).
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Inventors: Sumeet C. Pandey, Lei Bi, Roy E. Meade, Qian Tao, Ashonita A. Chavan
  • Publication number: 20190103151
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Application
    Filed: November 19, 2018
    Publication date: April 4, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Patent number: 10242989
    Abstract: A ferroelectric memory device includes a plurality of memory cells. Each of the memory cells comprises at least one electrode and a ferroelectric crystalline material disposed proximate the at least one electrode. The ferroelectric crystalline material is polarizable by an electric field capable of being generated by electrically charging the at least one electrode. The ferroelectric crystalline material comprises a polar and chiral crystal structure without inversion symmetry through an inversion center. The ferroelectric crystalline material does not consist essentially of an oxide of at least one of hafnium (Hf) and zirconium (Zr).
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Sumeet C. Pandey, Lei Bi, Roy E. Meade, Qian Tao, Ashonita A. Chavan
  • Publication number: 20190066917
    Abstract: A method used in forming an electronic device comprising conductive material and ferroelectric material comprises forming a composite stack comprising multiple metal oxide-comprising insulator materials. At least one of the metal oxide-comprising insulator materials is between and directly against non-ferroelectric insulating materials. The multiple metal oxide-comprising insulator materials are of different composition from that of immediately-adjacent of the non-ferroelectric insulating materials. The composite stack is subjected to a temperature of at least 200° C. After the subjecting, the composite stack comprises multiple ferroelectric metal oxide-comprising insulator materials at least one of which is between and directly against non-ferroelectric insulating materials. After the subjecting, the composite stack is ferroelectric. Conductive material is formed and that is adjacent the composite stack. Devices are also disclosed.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Inventors: Manuj Nahar, Ashonita A. Chavan