Patents by Inventor Ashonita A. Chavan

Ashonita A. Chavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10217753
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: February 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita Chavan
  • Patent number: 10192605
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: January 29, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Patent number: 10147474
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: December 4, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Publication number: 20180197869
    Abstract: A method of forming an array comprising pairs of vertically opposed capacitors comprises forming a conductive lining in individual capacitor openings in support material. An elevational mid-portion of individual of the conductive linings is removed to form an upper capacitor electrode lining and a lower capacitor electrode lining that are elevationally separate and spaced from one another in the individual capacitor openings. A capacitor insulator is formed laterally outward of the upper and lower capacitor electrode linings. Conductive material is formed laterally outward of the capacitor insulator to comprise a shared capacitor electrode that is shared by vertically opposed capacitors in individual of the pairs of vertically opposed capacitors. Other methods and structure independent of method of manufacture are disclosed.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Applicant: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20180145084
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 24, 2018
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita Chavan
  • Publication number: 20180137905
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 17, 2018
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Publication number: 20180102374
    Abstract: A method used in forming an electronic component comprising conductive material and ferroelectric material comprises forming a non-ferroelectric metal oxide-comprising insulator material over a substrate. A composite stack comprising at least two different composition non-ferroelectric metal oxides is formed over the substrate. The composite stack has an overall conductivity of at least 1×102 Siemens/cm. The composite stack is used to render the non-ferroelectric metal oxide-comprising insulator material to be ferroelectric. Conductive material is formed over the composite stack and the insulator material. Ferroelectric capacitors and ferroelectric field effect transistors independent of method of manufacture are also disclosed.
    Type: Application
    Filed: December 13, 2017
    Publication date: April 12, 2018
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy, Manuj Nahar
  • Patent number: 9935114
    Abstract: A method of forming an array comprising pairs of vertically opposed capacitors comprises forming a conductive lining in individual capacitor openings in support material. An elevational mid-portion of individual of the conductive linings is removed to form an upper capacitor electrode lining and a lower capacitor electrode lining that are elevationally separate and spaced from one another in the individual capacitor openings. A capacitor insulator is formed laterally outward of the upper and lower capacitor electrode linings. Conductive material is formed laterally outward of the capacitor insulator to comprise a shared capacitor electrode that is shared by vertically opposed capacitors in individual of the pairs of vertically opposed capacitors. Other methods and structure independent of method of manufacture are disclosed.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: April 3, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy
  • Patent number: 9899072
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: February 20, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Patent number: 9887204
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: February 6, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita A. Chavan
  • Patent number: 9876018
    Abstract: A method used in forming an electronic component comprising conductive material and ferroelectric material comprises forming a non-ferroelectric metal oxide-comprising insulator material over a substrate. A composite stack comprising at least two different composition non-ferroelectric metal oxides is formed over the substrate. The composite stack has an overall conductivity of at least 1×102 Siemens/cm. The composite stack is used to render the non-ferroelectric metal oxide-comprising insulator material to be ferroelectric. Conductive material is formed over the composite stack and the insulator material. Ferroelectric capacitors and ferroelectric field effect transistors independent of method of manufacture are also disclosed.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 23, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy, Manuj Nahar
  • Publication number: 20180006044
    Abstract: Ferroelectric memory and methods of forming the same are provided. An example memory cell can include a buried recessed access device (BRAD) formed in a substrate and a ferroelectric capacitor formed on the BRAD.
    Type: Application
    Filed: August 31, 2017
    Publication date: January 4, 2018
    Inventors: Ashonita A. Chavan, Alessandro Calderoni, D.V. Nirmal Ramaswamy
  • Publication number: 20170345831
    Abstract: Some embodiments include a ferroelectric device comprising ferroelectric material adjacent an electrode. The device includes a semiconductor material-containing region along a surface of the ferroelectric material nearest the electrode. The semiconductor material-containing region has a higher concentration of semiconductor material than a remainder of the ferroelectric material. The device may be, for example, a transistor or a capacitor. The device may be incorporated into a memory array. Some embodiments include a method of forming a ferroelectric capacitor. An oxide-containing ferroelectric material is formed over a first electrode. A second electrode is formed over the oxide-containing ferroelectric material. A semiconductor material-enriched portion of the oxide-containing ferroelectric material is formed adjacent the second electrode.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Ashonita A. Chavan, Ramanathan Gandhi, Beth R. Cook, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20170294219
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Application
    Filed: June 23, 2017
    Publication date: October 12, 2017
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Patent number: 9768181
    Abstract: Ferroelectric memory and methods of forming the same are provided. An example memory cell can include a buried recessed access device (BRAD) formed in a substrate and a ferroelectric capacitor formed on the BRAD.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: September 19, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Alessandro Calderoni, D. V. Nirmal Ramaswamy
  • Publication number: 20170236828
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Application
    Filed: May 2, 2017
    Publication date: August 17, 2017
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita A. Chavan
  • Patent number: 9697881
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 4, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Publication number: 20170162587
    Abstract: A method used in forming an electronic component comprising conductive material and ferroelectric material comprises forming a non-ferroelectric metal oxide-comprising insulator material over a substrate. A composite stack comprising at least two different composition non-ferroelectric metal oxides is formed over the substrate. The composite stack has an overall conductivity of at least 1×102 Siemens/cm. The composite stack is used to render the non-ferroelectric metal oxide-comprising insulator material to be ferroelectric. Conductive material is formed over the composite stack and the insulator material. Ferroelectric capacitors and ferroelectric field effect transistors independent of method of manufacture are also disclosed.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 8, 2017
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy, Manuj Nahar
  • Patent number: 9673203
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: June 6, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita A. Chavan
  • Publication number: 20170062037
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Application
    Filed: August 19, 2016
    Publication date: March 2, 2017
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein