Patents by Inventor Atsushi Fukumoto

Atsushi Fukumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971633
    Abstract: An electrode structure includes: a plurality of pixel electrodes arranged separately from each other; and a plurality of dielectric layers laminated in a first direction with respect to the plurality of pixel electrodes, in which the plurality of dielectric layers includes: a first dielectric layer that spreads over the plurality of pixel electrodes in a direction intersecting with the first direction; and a second dielectric layer that includes dielectric material having a refractive index higher than that of the first dielectric layer, sandwiches the first dielectric layer together with the plurality of pixel electrodes, and has a slit at a position overlapping space between pixel electrodes adjacent when viewed from the first direction.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: April 30, 2024
    Assignees: SONY SEMICONDUCTOR SOLUTIONS CORPORATION, SONY GROUP CORPORATION
    Inventors: Takashi Sakairi, Tomoaki Honda, Tsuyoshi Okazaki, Keiichi Maeda, Chiho Araki, Katsunori Dai, Shunsuke Narui, Kunihiko Hikichi, Kouta Fukumoto, Toshiaki Okada, Takuma Matsuno, Yuu Kawaguchi, Yuuji Adachi, Koichi Amari, Hideki Kawaguchi, Seiya Haraguchi, Takayoshi Masaki, Takuya Fujino, Tadayuki Dofuku, Yosuke Takita, Kazuhiro Tamura, Atsushi Tanaka
  • Patent number: 11945474
    Abstract: A driving assistance apparatus configured to support a driving of a vehicle at a time of pulling out of the vehicle, the driving assistance apparatus including: a control section configured to determine a movement path from a parking space to a predetermined position of a road region, and run the vehicle along the movement path on a basis of surroundings information of the vehicle when pulling out the vehicle from the parking space to the road region, wherein the control section leaves an accelerator operation for the vehicle to a user while automatically controlling a steering operation for the vehicle at least in a section in the movement path, and switches from an automated driving mode to a manual driving mode in response to the steering operation that is performed by the user when the vehicle travels in the section.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: April 2, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takehito Sato, Atsushi Nojiri, Satoshi Fukumoto, Yoshimasa Okabe
  • Patent number: 11903202
    Abstract: In one embodiment, a method of manufacturing a semiconductor device includes forming a semiconductor layer including a plurality of metal atoms on a substrate, and forming a first layer including a plurality of silicon atoms and a plurality of nitrogen atoms on the semiconductor layer. The method further includes transferring at least some of the metal atoms in the semiconductor layer into the first layer. and removing the first layer after transferring the at least some of the metal atoms in the semiconductor layer into the first layer. Furthermore, a ratio of a number of the nitrogen atoms relative to a number of the silicon atoms and the nitrogen atoms in the first layer is smaller than 4/7.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: February 13, 2024
    Assignee: Kioxia Corporation
    Inventors: Aki Maeda, Noritaka Ishihara, Atsushi Fukumoto, Shuto Yamasaka
  • Patent number: 11813687
    Abstract: An aluminum alloy brazing sheet used for brazing in an inert gas atmosphere without using flux includes a core material of aluminum or aluminum alloy, and a brazing material of aluminum alloy including Si of 4.0 mass % to 13.0 mass % and cladding one side surface or both side surfaces of the core material. One or both of the core material and the brazing material includes any one or two or more types of X atoms (X is Mg, Li, Be, Ca, Ce, La, Y, and Zr). The aluminum alloy brazing sheet is a brazing sheet in which oxide particles including the X atoms and having a volume change ratio of 0.99 or lower with respect to an oxide film before brazing heating are formed on a surface thereof, by brazing heating.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: November 14, 2023
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Atsushi Fukumoto
  • Patent number: 11807919
    Abstract: An aluminum alloy fin material for a heat exchanger is made of an aluminum alloy including 0.05 mass % to 0.5 mass % of Si, 0.05 mass % to 0.7 mass % of Fe, 10 mass % to 2.0 mass % of Mn, 0.5 mass % to 1.5 mass % of Cu, and 3.0 mass % to 7.0 mass % of Zn, with the balance being Al and unavoidable impurities. In an L-ST plane thereof, second-phase grains having an equivalent circle diameter equal to or more than 0.030 ?m and less than 0.50 ?m have a perimeter density of 0.30 ?m/?m2 or more, second-phase grains having an equivalent circle diameter equal to or more than 0.50 ?m have a perimeter density of 0.030 ?m/?m2 or more, and specific resistance thereof at 20° C. is 0.030 ??m or more.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: November 7, 2023
    Assignee: UACJ CORPORATION
    Inventors: Wataru Nakagawa, Atsushi Fukumoto, Junichi Mochizuki, Tatsuya Ide
  • Publication number: 20230312361
    Abstract: A method of producing antimony trisulfide is provided, including: mixing metal antimony powder, antimony trioxide powder, and sulfur powder to provide a mixture; and heating the mixture.
    Type: Application
    Filed: March 14, 2023
    Publication date: October 5, 2023
    Inventors: Satoshi KITAZONO, Shinya YOSHITANI, Atsushi FUKUMOTO
  • Publication number: 20230276627
    Abstract: A semiconductor device according to the present embodiment comprises a stack including a plurality of electrode films stacked in a first direction to be separated from each other. A column portion extends in the stack in the first direction and includes a semiconductor layer, and has memory cells at respective intersections of the semiconductor layer and the electrode films. A dividing portion extends in the stack in the first direction and a second direction crossing the first direction, divides the electrode films in a third direction crossing the first direction and the second direction, and includes an insulator. A first film is provided between the insulator and an end surface in the third direction of each of the electrode films and contains a first metal and silicon.
    Type: Application
    Filed: September 1, 2022
    Publication date: August 31, 2023
    Applicant: Kioxia Corporation
    Inventors: Takashi FUKUSHIMA, Kaihei KATOU, Kenichiro TORATANI, Ryota FUJITSUKA, Junya FUJITA, Atsushi FUKUMOTO, Motoki FUJII, Yuki WAKISAKA, Kazuya HATANO
  • Patent number: 11637123
    Abstract: A semiconductor device according to one embodiment is provided with: a substrate; a stacked body provided on the substrate; and a pillar portion penetrating the stacked body. The pillar portion has a first film including a first material and a second material, and a second film provided on an inner side of the first film. The second material is a material that increases an etching rate of the first material as a composition rate relative to the first material is higher, and the composition rate gradually decreases from an upper part to a lower part of the first film.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: April 25, 2023
    Assignee: Kioxia Corporation
    Inventors: Atsushi Fukumoto, Keisuke Suda, Takayuki Ito
  • Publication number: 20220301870
    Abstract: According to an embodiment, a semiconductor manufacturing method includes forming a first seed layer on an underlying layer with a first gas that is an aminosilane gas. The method further includes forming a first amorphous silicon layer on the first seed layer with a second gas that is a silane gas not containing an amino group. The method further includes forming a second seed layer containing impurities on the first amorphous silicon layer with a third gas that is an aminosilane gas. The method further includes forming a second amorphous silicon layer on the second seed layer with a fourth gas that is a silane gas not containing an amino group.
    Type: Application
    Filed: September 14, 2021
    Publication date: September 22, 2022
    Applicant: Kioxia Corporation
    Inventors: Atsushi FUKUMOTO, Fumiki AISO
  • Publication number: 20220302158
    Abstract: In one embodiment, a method of manufacturing a semiconductor device includes forming a semiconductor layer including a plurality of metal atoms on a substrate, and forming a first layer including a plurality of silicon atoms and a plurality of nitrogen atoms on the semiconductor layer. The method further includes transferring at least some of the metal atoms in the semiconductor layer into the first layer. and removing the first layer after transferring the at least some of the metal atoms in the semiconductor layer into the first layer. Furthermore, a ratio of a number of the nitrogen atoms relative to a number of the silicon atoms and the nitrogen atoms in the first layer is smaller than 4/7.
    Type: Application
    Filed: August 4, 2021
    Publication date: September 22, 2022
    Applicant: Kioxia Corporation
    Inventors: Aki MAEDA, Noritaka ISHIHARA, Atsushi FUKUMOTO, Shuto YAMASAKA
  • Patent number: 11408690
    Abstract: A method for producing an aluminum alloy clad material having a core material and a sacrificial anode material clad on at least one surface of the core material, wherein the core material comprises an aluminum alloy comprising 0.050 to 1.5 mass % (referred to as “%” below) Si, 0.050 to 2.0% Fe and 0.50 to 2.00% Mn; the sacrificial anode material includes an aluminum alloy containing 0.50 to 8.00% Zn, 0.05 to 1.50% Si and 0.050 to 2.00% Fe; the grain size of the sacrificial anode material is 60 ?m or more; and a ratio R1/R2 is 0.30 or less, wherein R1 (?m) is a grain size in a thickness direction and R2 (?m) is a grain size in a rolling direction in a cross section of the core material along the rolling direction; a production method thereof; and a heat exchanger using the clad.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: August 9, 2022
    Assignee: UACJ CORPORATION
    Inventors: Makoto Ando, Atsushi Fukumoto, Akio Niikura
  • Publication number: 20220077184
    Abstract: A semiconductor device according to one embodiment includes a substrate, a wiring layer provided on the substrate and including source lines, a stacked body including a plurality of conductive layers and a plurality of insulating layers alternately stacked on the wiring layer, a cell film provided in the stacked body, a semiconductor film facing the cell film in the stacked body, and a diffusion film being in contact with the source lines in the wiring layer and being in contact with the semiconductor film in the stacked body. The diffusion film includes impurities and a top end portion of the diffusion film is at a higher position than a lowermost conductive layer among the conductive layers.
    Type: Application
    Filed: June 17, 2021
    Publication date: March 10, 2022
    Applicant: Kioxia Corporation
    Inventors: Atsushi FUKUMOTO, Junya FUJITA, Osamu ARISUMI, Fan WEN, Takayuki ITO
  • Publication number: 20220077170
    Abstract: A semiconductor memory includes a substrate, a source line layer above the substrate in a memory region and a peripheral region of the substrate, a first insulating layer above the source line layer, a first conductive layer on the first insulating layer in the memory and peripheral regions, an alternating stack of a plurality of second insulating layers and a plurality of second conductive layers on the first conductive layer in the memory region, and a plurality of pillars extending through the alternating stack of the second insulating layers and the second conductive layers, the first conductive layer, and the first insulating layer in the memory region. A bottom end of each of the pillars is in the source line layer in a thickness direction. A carrier density of the source line layer is higher in the memory region than in the peripheral region.
    Type: Application
    Filed: November 12, 2021
    Publication date: March 10, 2022
    Inventors: Yoshiaki FUKUZUMI, Keisuke SUDA, Fumiki AISO, Atsushi FUKUMOTO
  • Publication number: 20210331263
    Abstract: An aluminum alloy brazing sheet used for brazing in an inert gas atmosphere without using flux includes a core material of aluminum or aluminum alloy, and a brazing material of aluminum alloy including Si of 4.0 mass % to 13.0 mass % and cladding one side surface or both side surfaces of the core material. One or both of the core material and the brazing material includes any one or two or more types of X atoms (X is Mg, Li, Be, Ca, Ce, La, Y, and Zr). The aluminum alloy brazing sheet is a brazing sheet in which oxide particles including the X atoms and having a volume change ratio of 0.99 or lower with respect to an oxide film before brazing heating are formed on a surface thereof, by brazing heating.
    Type: Application
    Filed: July 6, 2021
    Publication date: October 28, 2021
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Atsushi Fukumoto
  • Patent number: 11136652
    Abstract: An aluminum alloy material comprises: Si: less than 0.2 mass %, Fe: 0.1 to 0.3 mass %, Cu: 1.0 to 2.5 mass %, Mn: 1.0 to 1.6 mass %, and Mg: 0.1 to 1.0 mass %, the balance being Al and incidental impurities. A number density of Al—Mn compound having a circle equivalent diameter of not less than 0.1 ?m is not less than 1.0×105 mm?2, and a number density of Al2Cu having a circle equivalent diameter of not less than 0.1 ?m is not more than 1.0×105 mm?2.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: October 5, 2021
    Assignee: UACJ CORPORATION
    Inventors: Wataru Narita, Atsushi Fukumoto
  • Patent number: 11090749
    Abstract: An aluminum alloy brazing sheet used for brazing in an inert gas atmosphere without using flux includes a core material of aluminum or aluminum alloy, and a brazing material of aluminum alloy including Si of 4.0 mass % to 13.0 mass % and cladding one side surface or both side surfaces of the core material. One or both of the core material and the brazing material includes any one or two or more types of X atoms (X is Mg, Li, Be, Ca, Ce, La, Y, and Zr). The aluminum alloy brazing sheet is a brazing sheet in which oxide particles including the X atoms and having a volume change ratio of 0.99 or lower with respect to an oxide film before brazing heating are formed on a surface thereof, by brazing heating.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: August 17, 2021
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Atsushi Fukumoto
  • Publication number: 20210207901
    Abstract: An aluminum alloy heat exchanger includes a core material formed of an aluminum alloy including Mn of 0.60 to 2.00 mass % and Cu of 1.00 mass % or less, with the balance being Al and inevitable impurities, and a sacrificial anode material formed of an aluminum alloy including Zn of 2.50 to 10.00 mass %, with the balance being Al and inevitable impurities. Pitting potential of a sacrificial anode material surface of a tube of the aluminum alloy heat exchanger in a 5% NaCl solution is ?800 (mV vs Ag/AgCl) or less, and pitting potential of an aluminum fin of the aluminum alloy heat exchanger in a 5% NaCl solution is equal to or more than the pitting potential of the sacrificial anode material surface of the tube of the aluminum alloy heat exchanger in a 5% NaCl solution.
    Type: Application
    Filed: May 17, 2019
    Publication date: July 8, 2021
    Applicants: UACJ CORPORATION, DENSO CORPORATION
    Inventors: Tomohiro Shoji, Yoshihiko Kyo, Atsushi Fukumoto, Yoshiyuki Oya, Takahiro Shinoda, Koichi Nakashita, Naoto Goto
  • Publication number: 20210199395
    Abstract: An aluminum alloy heat exchanger includes a core material formed of an aluminum alloy comprising Mn of 0.60 to 2.00 mass % and Cu of 1.00 mass % or less, with the balance being Al and inevitable impurities, and a sacrificial anode material formed of an aluminum alloy comprising Zn of 2.50 to 10.00 mass %, with the balance being Al and inevitable impurities. Pitting potential of a sacrificial anode material surface of a tube of the aluminum alloy heat exchanger in a 5% NaCl solution is ?800 (mV vs Ag/AgCl) or less, and pitting potential of an aluminum fin of the aluminum alloy heat exchanger in a 5% NaCl solution is less than the pitting potential of the sacrificial anode material surface of the tube of the aluminum alloy heat exchanger in a 5% NaCl solution.
    Type: Application
    Filed: May 17, 2019
    Publication date: July 1, 2021
    Applicants: UACJ Corporation, DENSO CORPORATION
    Inventors: Tomohiro Shoji, Yoshihiko Kyo, Atsushi Fukumoto, Yoshiyuki Oya, Takahiro Shinoda, Koichi Nakashita, Naoto Goto
  • Publication number: 20210087657
    Abstract: A method of manufacturing a fin material made of an aluminum alloy for heat exchangers with no fin buckling deformation and having excellent buckling resistance in a temperature range of 400° C. to 580° C. before a filler alloy melts at the time of brazing is provided. The fin material made of an aluminum alloy for heat exchangers contains 1.0 to 2.0 mass % of Mn, 0.7 to 1.4 mass % of Si, and 0.05 to 0.3 mass % of Fe, with the balance being Al and unavoidable impurities, in which a number density of intermetallic compounds having a circle-equivalent diameter of 0.025 to 0.4 ?m is 3.0×106 particles/mm2 or more, and an amount of solid solution of Mn is 0.3 mass % or less.
    Type: Application
    Filed: December 1, 2020
    Publication date: March 25, 2021
    Applicants: UACJ Corporation, DENSO CORPORATION
    Inventors: Yusuke Ohashi, Atsushi Fukumoto, Shogo Yamada, Shinichiro Takise, Takahiro Shinoda
  • Publication number: 20210082952
    Abstract: A semiconductor device according to one embodiment is provided with: a substrate; a stacked body provided on the substrate; and a pillar portion penetrating the stacked body. The pillar portion has a first film including a first material and a second material, and a second film provided on an inner side of the first film. The second material is a material that increases an etching rate of the first material as a composition rate relative to the first material is higher, and the composition rate gradually decreases from an upper part to a lower part of the first film.
    Type: Application
    Filed: August 10, 2020
    Publication date: March 18, 2021
    Applicant: Kioxia Corporation
    Inventors: Atsushi Fukumoto, Keisuke Suda, Takayuki Ito