Patents by Inventor Aurelian Dodoc

Aurelian Dodoc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100323299
    Abstract: A projection objective suitable for immersion microlithography is designed as a single-waist system with five lens groups, and has a first lens group of negative refractive power, a second lens group of positive refractive power, a third lens group of negative refractive power, a fourth lens group of positive refractive power and a fifth lens group of positive refractive power. The fourth lens group has an entrance surface (E) that lies in the vicinity of a point of inflection of a marginal ray height between the third lens group (LG3) and the fourth lens group (LG4). No negative lens of substantial refractive power is arranged between the entrance surface and the system diaphragm (5). Embodiments of inventive projection objectives achieve a very high numerical aperture NA>1 in conjunction with a large image field and are distinguished by a compact design size.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 23, 2010
    Applicant: Carl Zeiss SMT AG
    Inventors: Aurelian DODOC, Wilhelm Ulrich, Hans-Juergen Rostalski
  • Patent number: 7848016
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object surface onto an image surface of the projection objective has an object-side imaging subsystem for creating a final intermediate image closest to the image surface from radiation coming from the object surface and an image-side imaging subsystem for directly imaging the final intermediate image onto the image surface. The image-side imaging subsystem includes a last optical element closest to the image surface and is designed for creating a convergent beam having an aperture sin ??0.8 in the last optical element.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: December 7, 2010
    Assignee: Carl Zeiss SMT AG
    Inventor: Aurelian Dodoc
  • Patent number: 7835073
    Abstract: In some embodiments, a projection objective for lithography includes an optical arrangement of optical elements between an object plane and an image plane. The arrangement generally has at least one intermediate image plane, the arrangement further having at least two correction elements for correcting aberrations, of which a first correction element is arranged optically at least in the vicinity of a pupil plane and a second correction element is arranged in a region which is not optically near either a pupil plane or a field plane.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: November 16, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Heiko Feldmann, Susanne Beder, Aurelian Dodoc, Alexander Epple, Hans-Juergen Rostalski
  • Publication number: 20100265572
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Application
    Filed: June 16, 2010
    Publication date: October 21, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20100265480
    Abstract: A mirror for the EUV wavelength range (1) having a layer arrangement (P) applied on a substrate (S), the layer arrangement having a periodic sequence of individual layers, where the periodic sequence has at least two individual layers—forming a period—composed respectively of silicon (Si) and ruthenium (Ru). Also disclosed are a projection objective for microlithography (2) including such a mirror, and a projection exposure apparatus for microlithography having such a projection objective (2).
    Type: Application
    Filed: April 8, 2010
    Publication date: October 21, 2010
    Applicant: Carl Zeiss SMT AG
    Inventor: Aurelian DODOC
  • Publication number: 20100253999
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective comprises: a first objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part for imaging the first intermediate imaging into a second intermediate image; a third objective part for imaging the second intermediate imaging directly onto the image plane; wherein a first concave mirror having a first continuous mirror surface and at least one second concave mirror having a second continuous mirror surface are arranged upstream of the second intermediate image; pupil surfaces are formed between the object plane and the first intermediate image, between the first and the second intermediate image and between the second intermediate image and the image plane; and all concave mirrors are arranged optically remote from a pupil surface.
    Type: Application
    Filed: June 17, 2010
    Publication date: October 7, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Publication number: 20100231883
    Abstract: A microlithographic projection exposure apparatus includes a primary illumination system producing projection light, a projection objective and a correction optical system. The correction optical system includes a secondary illumination system, which produces an intensity distribution of correction light in a reference surface, and a correction element which includes a heating material and is arranged in a plane that is at least substantially optically conjugate to the reference surface such that the correction light and the projection light pass through at least one lens contained in the projection objective before they impinge on the correction element. All lenses through which both the correction light and the projection light pass are made of a lens material which has a lower coefficient of absorption for the correction light than the heating material contained in the correction element.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 16, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Aurelian Dodoc, Sascha Bleidistel, Olaf Conradi, Arif Kazi
  • Publication number: 20100208225
    Abstract: A projection objective with obscurated pupil for microlithography has a first optical surface, which has a first region provided for application of useful light, and at least one second optical surface, which has a second region provided for application of useful light. A beam envelope of the useful light extends between the first region and the second region. At least one tube open on the input side and on the output side in the light propagation direction severs to screen scattered light. The at least one tube is between the first optical surface and the second optical surface. The wall of the tube is opaque in the wavelength range of the useful light. The tube extends in the propagation direction of the useful light over at least a partial length of the beam envelope and circumferentially surrounds the beam envelope.
    Type: Application
    Filed: March 12, 2010
    Publication date: August 19, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Daniel Kraehmer, Aurelian Dodoc, Hans-Juergen Mann, Toralf Gruner
  • Publication number: 20100172019
    Abstract: A reduction projection objective for projection lithography has a plurality of optical elements configured to image an effective object field arranged in an object surface of the projection objective into an effective image field arranged in an image surface of the projection objective at a reducing magnification ratio |?|<1. The optical elements form a dry objective adapted with regard to aberrations to a gaseous medium with refractive index n?<1.01 filling an image space of finite thickness between an exit surface of the projection objective and the image surface. The optical elements include a largest lens having a maximum lens diameter Dmax and are configured to provide an image-side numerical aperture NA<1 in an effective image field having a maximum image field height Y?. With COMP=Dmax/(Y?·(NA/n?)2) the condition COMP<15.8 holds.
    Type: Application
    Filed: January 4, 2010
    Publication date: July 8, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: WILHELM ULRICH, AURELIAN DODOC, HEIKO FELDMANN, HANS-JUERGEN ROSTALSKI
  • Patent number: 7751129
    Abstract: A purely refractive projection objective suitable for immersion microlithography is designed as a single-waist system with five lens groups in the case of which a first lens group of negative refractive power, a second lens group of positive refractive power, a third lens group of negative refractive power, a fourth lens group of positive refractive power and a fifth lens group of positive refractive power are provided. The fourth lens group has an entrance surface (E) that lies in the vicinity of a point of inflection of a marginal ray height between the third lens group (LG3) and the fourth lens group (LG4). No negative lens of substantial refractive power is arranged between the entrance surface and the system diaphragm (5). Embodiments of inventive projection objectives achieve a very high numerical aperture NA>1 in conjunction with a large image field and are distinguished by a compact design size.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: July 6, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Hans-Juergen Rostalski
  • Patent number: 7738188
    Abstract: A reduction projection objective for projection lithography has a plurality of optical elements configured to image an effective object field arranged in an object surface of the projection objective into an effective image field arranged in an image surface of the projection objective at a reducing magnification ratio |?|<1. The optical elements form a dry objective adapted with regard to aberrations to a gaseous medium with refractive index n?<1.01 filling an image space of finite thickness between an exit surface of the projection objective and the image surface. The optical elements include a largest lens having a maximum lens diameter Dmax and are configured to provide an image-side numerical aperture NA<1 in an effective image field having a maximum image field height Y?. With COMP=Dmax/(Y?·(NA/n?)2) the condition COMP<15.8 holds.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: June 15, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Wilhelm Ulrich, Aurelian Dodoc, Heiko Feldmann, Hans-Juergen Rostalski
  • Patent number: 7712905
    Abstract: An imaging system for imaging an off-axis object field arranged in an object surface of the imaging system onto an off-axis image field arranged in an image surface of the imaging system while creating at least one intermediate image has: an optical axis; an in-line mirror group having an object side mirror group entry, an image side mirror group exit and a mirror group plane aligned transversely to the optical axis and arranged geometrically between the mirror group entry and the mirror group exit, the mirror group including: a first mirror having a first mirror surface for receiving radiation coming from the object surface in a first reflecting area asymmetric to the optical axis; at least one second mirror having a second mirror surface facing the first mirror surface for receiving radiation coming from the first mirror in a second reflecting area asymmetric to the optical axis; at least one of the first and second mirrors being a concave mirror having a concave mirror surface defining a mirror axis on the
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: May 11, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David Shafer, Aurelian Dodoc, Alexander Epple, Hans-Juergen Mann
  • Patent number: 7697198
    Abstract: A catadioptric projection objective for projecting a pattern arranged in the object plane of the projection objective into the image plane of the projection objective, having: a first objective part for projecting an object field lying in the object plane into a first real intermediate image; a second objective part for generating a second real intermediate image with the radiation coming from the first objective part; a third objective part for generating a third real intermediate image with the radiation coming from the second objective part; and a fourth objective part for projecting the third real intermediate image into the image plane.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: April 13, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David Shafer, Alexander Epple, Aurelian Dodoc, Wilhelm Ulrich, Karl-Heinz Schuster
  • Patent number: 7697211
    Abstract: The invention features a system for microlithography that includes a mercury light source configured to emit radiation at multiple mercury emission lines, a projection objective positioned to receive radiation emitted by the mercury light source, and a stage configured to position a wafer relative to the projection objective. During operation, the projection objective directs radiation from the light source to the wafer, where the radiation at the wafer includes energy from more than one of the emission lines. Optical lens systems for use in said projection objective comprise four lens groups, each having two lenses comprising silica, the first and second lens groups on one hand and the third and fourth lens groups on the other hand are positioned symmetrically with respect to a plane perpendicular to the optical axis of said lens system.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: April 13, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David R. Shafer, Aurelian Dodoc, Johannes Zellner, Heiko Feldmann, Wilhelm Ulrich, Holger Walter, Ulrich Loering, Daniel Kraehmer, Gerhard Fuerter
  • Publication number: 20100073655
    Abstract: An optical system of a microlithographic projection exposure apparatus contains a module, which can be fitted in the optical system and removed from it as a unit. The module contains a cavity which can be completely filled with a liquid and hermetically sealed, and a concavely curved optical surface which bounds the cavity at the top during operation of the projection exposure apparatus. This makes it possible to fill the module outside the optical system. The module can be tilted there so that no air bubble, which prevents complete filling, can form below the concavely curved optical surface.
    Type: Application
    Filed: December 1, 2009
    Publication date: March 25, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Aurelian Dodoc, Albrecht Ehrmann, Sascha Bleidistel
  • Patent number: 7679821
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective comprises: a first objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part for imaging the first intermediate imaging into a second intermediate image; a third objective part for imaging the second intermediate imaging directly onto the image plane; wherein a first concave mirror having a first continuous mirror surface and at least one second concave mirror having a second continuous mirror surface are arranged upstream of the second intermediate image; pupil surfaces are formed between the object plane and the first intermediate image, between the first and the second intermediate image and between the second intermediate image and the image plane; and all concave mirrors are arranged optically remote from a pupil surface.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: March 16, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 7672047
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective comprises: a first objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part for imaging the first intermediate imaging into a second intermediate image; a third objective part for imaging the second intermediate imaging directly onto the image plane; wherein a first concave mirror having a first continuous mirror surface and at least one second concave mirror having a second continuous mirror surface are arranged upstream of the second intermediate image; pupil surfaces are formed between the object plane and the first intermediate image, between the first and the second intermediate image and between the second intermediate image and the image plane; and all concave mirrors are arranged optically remote from a pupil surface.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: March 2, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Publication number: 20100045952
    Abstract: A microlithographic projection exposure apparatus contains an illumination system (12) for generating projection light (13) and a projection lens (20; 220; 320; 420; 520; 620; 720; 820; 920; 1020; 1120) with which a reticle (24) that is capable of being arranged in an object plane (22) of the projection lens can be imaged onto a light-sensitive layer (26) that is capable of being arranged in an image plane (28) of the projection lens. The projection lens is designed for immersion mode, in which a final lens element (L5; L205; L605; L705; L805; L905; L1005; L1105) of the projection lens on the image side is immersed in an immersion liquid (34; 334a; 434a; 534a). A terminating element (44; 244; 444; 544; 644; 744; 844; 944; 1044; 1144) that is transparent in respect of the projection light (13) is fastened between the final lens element on the image side and the light-sensitive layer.
    Type: Application
    Filed: November 4, 2009
    Publication date: February 25, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Aurelian Dodoc, Karl Heinz Schuster, Joerg Mallmann, Wilhelm Ulrich, Hans-Juergen Rostalski
  • Publication number: 20100026978
    Abstract: The disclosure relates a projection objective of a microlithographic projection exposure apparatus, as well as a related microlithographic projection exposure apparatus and method. The projection objective can include a lens of a cubically crystalline material whose crystal orientation is oriented at an angle of at most 15° relative to the optical axis of the projection objective. The projection objective can also include a polarization correction element which has at least two subelements of birefringent, optically uniaxial material and having at least one respective aspheric surface. During use of the projection objective, the polarization correction element at least partially compensates for an intrinsic birefringence of the lens.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 4, 2010
    Applicant: Carl Zeiss SMT AG
    Inventors: Johannes Ruoff, Aurelian Dodoc
  • Publication number: 20100020390
    Abstract: A catadioptric projection objective includes a plurality of optical elements arranged to image an off-axis object field arranged in an object surface onto an off-axis image field arranged in an image surface of the projection objective. The optical elements form: a first, refractive objective part that can generate a first intermediate image from radiation coming from the object surface and including a first pupil surface; a second objective part including at least one concave mirror that can image the first intermediate image into a second intermediate image and including a second pupil surface optically conjugated to the first pupil surface; and a third objective part that can image the second intermediate image onto the image surface and including a third pupil surface optically conjugated to the first and second pupil surface.
    Type: Application
    Filed: July 29, 2009
    Publication date: January 28, 2010
    Applicant: Carl Zeiss SMT AG
    Inventor: Aurelian Dodoc