Patents by Inventor Avgerinos V. Gelatos

Avgerinos V. Gelatos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170194156
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Application
    Filed: March 17, 2017
    Publication date: July 6, 2017
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Publication number: 20170178927
    Abstract: Methods for reducing oxygen content in an oxidized annealed metal nitride film comprising exposing the film to a plasma.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Brent Biggs, Avgerinos V. Gelatos, Takashi Kuratomi, Mark H. Lee
  • Patent number: 9685371
    Abstract: Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: June 20, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang Ho Yu, Mathew Abraham
  • Patent number: 9637819
    Abstract: Methods for depositing cobalt in features of a substrate include providing a substrate to a process chamber, the substrate having a first surface, a feature formed in the first surface comprising an opening defined by one or more sidewalls, a bottom surface, and upper corners, and the substrate having a first layer formed atop the first surface and the opening, wherein a thickness of the first layer is greater proximate the upper corners of the opening than at the sidewalls and bottom of the opening; exposing the substrate to a plasma formed from a silicon-containing gas to deposit a silicon layer predominantly onto a portion of the first layer atop the first surface of the substrate; and depositing a cobalt layer atop the substrate to fill the opening, wherein the silicon layer inhibits deposition of cobalt on the portion of the first layer atop the first surface of the substrate.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: May 2, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos
  • Publication number: 20170117118
    Abstract: Methods of etching include cycles of low temperature etching of a material layer disposed on a substrate, with at least one of the cycles being followed by activation of unreacted etchant deposits during an inert gas plasma treatment. In some embodiments, a method includes: positioning a substrate in a processing chamber; generating, in a first etching cycle, a plasma from a gas mixture within the processing chamber to form a processing gas including an etchant; exposing, to the etchant, a portion of a material layer disposed on a substrate maintained at a first temperature; generating an inert gas plasma within the processing chamber; generating, in a second etching cycle, a plasma from a gas mixture within the processing chamber to form a processing gas including an etchant; and heating the substrate to a second temperature to sublimate a byproduct of reaction between the etchant and the material layer.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 27, 2017
    Inventors: Shi Wei TOH, Avgerinos V. GELATOS, Vikash Banthia
  • Publication number: 20170084486
    Abstract: Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventors: Bhushan N. ZOPE, Avgerinos V. GELATOS, Bo ZHENG, Yu LEI, Xinyu FU, Srinivas GANDIKOTA, Sang Ho YU, Mathew ABRAHAM
  • Patent number: 9601339
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: March 21, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Patent number: 9546419
    Abstract: Methods for controlling crystal size in bulk tungsten layers are disclosed herein. Methods for depositing a bulk tungsten metal layer can include positioning a substrate with a barrier layer in a processing chamber, forming a tungsten nucleation layer, post-treating the nucleation layer with one or more treatment gas cycles including an activating gas and a purging gas, heating the substrate to a deposition temperature, and depositing a bulk tungsten layer with alternating nitrogen flow on the nucleation layer. The post-treatment cycling can be applied optionally to the bulk metal deposition with alternating nitrogen flow.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: January 17, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Amit Khandelwal, Avgerinos V. Gelatos
  • Patent number: 9528183
    Abstract: Implementations described herein generally relate to methods and apparatus for in-situ removal of unwanted deposition buildup from one or more interior surfaces of a semiconductor substrate processing chamber. In one implementation, a method for removing cobalt or cobalt containing deposits from one or more interior surfaces of a substrate processing chamber after processing a substrate disposed in the substrate processing chamber is provided. The method comprises forming a reactive species from the fluorine containing cleaning gas mixture, permitting the reactive species to react with the cobalt and/or the cobalt containing deposits to form cobalt fluoride in a gaseous state and purging the cobalt fluoride in gaseous state out of the substrate processing chamber.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: December 27, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kai Wu, Bo Zheng, Sang Ho Yu, Avgerinos V. Gelatos, Bhushan N. Zope, Jeffrey Anthis, Benjamin Schmiege
  • Publication number: 20160322229
    Abstract: Methods for selectively depositing a metal silicide layer are provided herein.
    Type: Application
    Filed: July 2, 2015
    Publication date: November 3, 2016
    Inventors: Seshadri GANGULI, Yixiong YANG, Bhushan N. ZOPE, Xinyu FU, Avgerinos V. GELATOS, Guoqiang JIAN, Bo ZHENG
  • Publication number: 20160247718
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Application
    Filed: May 3, 2016
    Publication date: August 25, 2016
    Inventors: Bhushan N. ZOPE, Avgerinos V. GELATOS, Bo ZHENG, Yu LEI, Xinyu FU, Srinivas GANDIKOTA, Sang-ho YU, Mathew ABRAHAM
  • Publication number: 20160133563
    Abstract: Methods for selectively depositing a cobalt layer are provided herein. In some embodiments, methods for selectively depositing a cobalt layer include: exposing a substrate to a first process gas to passivate an exposed dielectric surface, wherein the substrate comprises a dielectric layer having an exposed dielectric surface and a metal layer having an exposed metal surface; and selectively depositing a cobalt layer atop the exposed metal surface using a thermal deposition process.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 12, 2016
    Inventors: HUA AI, JIANG LU, AVGERINOS V. GELATOS, PAUL F. MA, SANG HO YU, FENG Q. LIU, XINYU FU, WEIFENG YE
  • Patent number: 9330939
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: May 3, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang-Ho Yu, Mathew Abraham
  • Publication number: 20160104624
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Application
    Filed: December 10, 2015
    Publication date: April 14, 2016
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Publication number: 20160104639
    Abstract: Embodiments of the present invention generally relate to a method of forming a cobalt layer on a dielectric material without incubation delay. Prior to depositing the cobalt layer using CVD, the surface of the dielectric material is pretreated at a temperature between 100° C. and 250° C. Since the subsequent CVD cobalt process is also performed at between 100° C. and 250° C., one processing chamber is used for pretreating the dielectric material and forming of the cobalt layer. The combination of processing steps enables use of two processing chambers to deposit cobalt.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 14, 2016
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos
  • Publication number: 20160079062
    Abstract: The present disclosure generally relates to methods for removing contaminants and native oxides from substrate surfaces. The method includes exposing a surface of the substrate to first hydrogen radical species, wherein the substrate is silicon germanium having a concentration of germanium above about 30%, then exposing the surface of the substrate to a plasma formed from a fluorine-containing precursor and a hydrogen-containing precursor, and then exposing the surface of the substrate to second hydrogen radical species.
    Type: Application
    Filed: September 4, 2015
    Publication date: March 17, 2016
    Inventors: Bo ZHENG, Avgerinos V. GELATOS, Anshul VYAS, Raymond Hoiman HUNG
  • Patent number: 9275865
    Abstract: Methods for plasma treatment of films to remove impurities are disclosed herein. Methods for removing impurities can include positioning a substrate with a barrier layer in a processing chamber, the barrier layer comprising a barrier metal and one or more impurities, maintaining the substrate at a bias, creating a plasma comprising a treatment gas, the treatment gas comprising an inert gas, delivering the treatment gas to the substrate to reduce the ratio of one or more impurities in the barrier layer, and reacting a deposition gas comprising a metal halide and hydrogen-containing gas to deposit a bulk metal layer on the barrier layer. The methods can further include the use of diborane to create selective nucleation in features over surface regions of the substrate.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: March 1, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Benjamin C. Wang, Joshua Collins, Michael Jackson, Avgerinos V. Gelatos, Amit Khandelwal
  • Patent number: 9230835
    Abstract: Embodiments of an integrated platform for fabricating n-type metal oxide semiconductor (NMOS) devices are provided herein. In some embodiments, an integrated platform for fabricating n-type metal oxide semiconductor (NMOS) devices may include a first deposition chamber configured to deposit a first layer atop the substrate, the first layer comprising titanium oxide (TiO2) or selenium (Se); a second deposition chamber configured to deposit a second layer atop the first layer, the second layer comprising titanium; a third deposition chamber configured to deposit a third layer atop the second layer, the third layer comprising one of titanium nitride (TiN) or tungsten nitride (WN).
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 5, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Avgerinos V. Gelatos, Srinivas Gandikota, Seshadri Ganguli, Xinyu Fu, Bo Zheng, Yu Lei
  • Patent number: 9230815
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: January 5, 2016
    Assignee: Appled Materials, Inc.
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Patent number: 9218980
    Abstract: Embodiments of the present invention generally relate to a method of forming a cobalt layer on a dielectric material without incubation delay. Prior to depositing the cobalt layer using CVD, the surface of the dielectric material is pretreated at a temperature between 100° C. and 250° C. Since the subsequent CVD cobalt process is also performed at between 100° C. and 250° C., one processing chamber is used for pretreating the dielectric material and forming of the cobalt layer. The combination of processing steps enables use of two processing chambers to deposit cobalt.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: December 22, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos