Patents by Inventor Baher Haroun

Baher Haroun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180180652
    Abstract: A microcontroller-based system for measuring the impedance of a device under test (DUT), responsive to a square wave stimulus, includes parallel stimulus signal paths, selectable by a switch, that can correspond to different stimulus frequency ranges. At least one of the paths includes an off-chip PLL and integer divider circuit to modify the frequency of the stimulus. A discrete Fourier transform executed by a processor is used to determine the impedance of the DUT at the stimulus frequency. Multiple frequencies can be analyzed at the same time by using a summation circuit and/or by analyzing odd harmonics of the stimulus frequency.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 28, 2018
    Inventors: CHARLES KASIMER SESTOK, IV, SRINATH RAMASWAMY, ANAND GANESH DABAK, DOMINGO G. GARCIA, BAHER HAROUN, ALAN HENRY LEEK, RYAN MICHAEL BROWN
  • Publication number: 20180131378
    Abstract: A high linearity phase interpolator (PI) is disclosed. A phase value parameter indicative of a desired phase difference between an output signal and an input clock signal edge may be provided by control logic. A first capacitor may be charged for a first period of time with a first current that is proportional to the phase value parameter to produce a first voltage on the capacitor that is proportional to the phase value parameter. The first capacitor may be further charged for a second period of time with a second current that has a constant value to form a voltage ramp offset by the first voltage. A reference voltage may be compared to the voltage ramp during the second period of time. The output signal may be asserted at a time when the voltage ramp equals the reference voltage.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Baher Haroun, Wenting Zhou, Kai Yiu Tam, Reza Hoshyar, Ali Kiaei
  • Publication number: 20180097523
    Abstract: Disclosed examples include fractional frequency divider circuits, including a counter to provide phase shifted pulse output signals in response to counting of an adjustable integer number NK cycles of an input clock signal, an output circuit to provide an output clock signal having a first edge between first edges of the pulse output signals, as well as a delta-sigma modulator (DSM), clocked by the second pulse output signal to receive a first predetermined value and to provide a DSM output value, and a phase accumulator to receive a step input value representing a sum of the DSM output value and a second predetermined value. The phase accumulator provides a divisor input signal to the counter, and provides a phase adjustment value to the output circuit to control the position of the first edge of the output clock signal between the first edges of the pulse output signals.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Applicant: Texas Instruments Incorporated
    Inventors: Reza Hoshyar, Wenting Zhou, Ali Kiaei, Baher Haroun, Ahmad Bahai
  • Patent number: 9867130
    Abstract: A time slot assignment arrangement for ultralow power devices in a wireless communication network is disclosed. The time slot assigned to ultralow power device wakeup frame is identified as ultralow power timeslot using various indicators. The ultralow power timeslot is assigned as contention based timeslot allowing ultralow power devices in the wireless network to extend the interval for synchronizing with the network overcoming the short synchronization interval requirements of wireless communication network resulting in significant improvement in battery life by preserving the power needed for frequent synchronization with the wireless communication network.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: January 9, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ariton E. Xhafa, Baher Haroun
  • Publication number: 20180006609
    Abstract: An outphasing amplifier includes a first class-E power amplifier having an output coupled to a first conductor and an input receiving a first RF drive signal. A first reactive element is coupled between the first conductor and a second conductor. A second reactive element is coupled between the second conductor and a third conductor. A second class-E power amplifier includes an output coupled to a fourth conductor and an input coupled to a second RF drive signal, a third reactive element coupled between the second and fourth conductors. Outputs of the first and second power amplifiers are combined by the first, second and third reactive elements to produce an output current in a load. An efficiency enhancement circuit is coupled between the first and fourth conductors to improve power efficiency at back-off power levels. Power enhancement circuits are coupled to the first and fourth conductors, respectively.
    Type: Application
    Filed: September 19, 2017
    Publication date: January 4, 2018
    Inventors: Aritra Banerjee, Joonhoi Hur, Baher Haroun, Nathan Richard Schemm, Rahmi Hezar, Lei Ding
  • Publication number: 20170331897
    Abstract: One example includes a system is comprised of an elongated transmission line and as module. The elongated transmission line includes an arrangement of transmission line couplers distributed along its length at spaced apart locations. The module has an outer surface and is comprised of a transmitter, and a transmitter coupler. The transmitter transmits a radio frequency signal. The transmitter coupler is on the outer surface of the module, electrically connects with the transmitter, and aligns to couple with a respective one of the transmission line couplers to provide a contactless communication link between the transmitter and the elongated transmission line.
    Type: Application
    Filed: December 15, 2016
    Publication date: November 16, 2017
    Inventors: SWAMINATHAN SANKARAN, BAHER HAROUN, SRINATH M. RAMASWAMY
  • Patent number: 9806673
    Abstract: An outphasing amplifier includes a first class-E power amplifier (16-1) having an output coupled to a first conductor (31-1) and an input receiving a first RF drive signal (S1(t)). A first reactive element (CA-1) is coupled between the first conductor and a second conductor (30-1). A second reactive element (LA-1) is coupled between the second conductor and a third conductor (32-1). A second class-E power amplifier (17-1) includes an output coupled to a fourth conductor (31-2) and an input coupled to a second RF drive signal (S2(t)), a third reactive element (CA-3) coupled between the second and fourth conductors. Outputs of the first and second power amplifiers are combined by the first, second and third reactive elements to produce an output current in a load (R). An efficiency enhancement circuit (LEEC-1) is coupled between the first and fourth conductors to improve power efficiency at back-off power levels. Power enhancement circuits (20-1,2) are coupled to the first and fourth conductors, respectively.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: October 31, 2017
    Assignee: TEXAS INSTRUMENT INCORPORATED
    Inventors: Aritra Banerjee, Joonhoi Hur, Baher Haroun, Nathan Richard Schemm, Rahmi Hezar, Lei Ding
  • Patent number: 9686818
    Abstract: In example embodiments disclosed herein, a primary wireless device infrequently sends a ping to a secondary device to determine if there are any communications from an access point intended for the primary wireless device. The secondary device, ideally connected to wall power, is wirelessly connected to the access point, acting as a connected proxy so that the primary wireless device, typically battery powered, does not always have to be connected. In a situation in which an incoming communication is intended for the primary device, the secondary device receives the notification and buffers whatever is sent from the access point intended for the primary wireless device and acknowledges the receipt. Then, when the primary wireless device pings the secondary device, the secondary device sends the buffered communication to the primary wireless device. As far as the access point is concerned, it thinks it is communicating directly with primary wireless device.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: June 20, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Leo Estevez, Baher Haroun
  • Publication number: 20170134071
    Abstract: A system is provided in which a set of modules each have a substrate on which is mounted a radio frequency (RF) transmitter and/or an RF receiver coupled to a near field communication (NFC) coupler located on the substrate. Each module has a housing that surrounds and encloses the substrate. The housing has a port region on a surface of the housing. Each module has a field confiner located between the NFC coupler and the port region on the housing configured to guide electromagnetic energy emanated from the NFC coupler through the port region to a port region of an adjacent module.
    Type: Application
    Filed: January 20, 2017
    Publication date: May 11, 2017
    Inventors: Swaminathan Sankaran, Bradley Allen Kramer, Benjamin Stassen Cook, Juan Alejandro Herbsommer, Lutz Naumann, Mark W. Morgan, Baher Haroun
  • Patent number: 9602325
    Abstract: At least one tone is generated. An output signal is generated in response to an input signal and the at least one tone. The output signal is modulated. The input signal and the at least one tone are represented in the modulated output signal. The at least one tone is outside a bandwidth of the input signal as represented in the modulated output signal. The modulated output signal is amplified. The at least one tone in the amplified signal is attenuated after the amplifying.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: March 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahmi Hezar, Lei Ding, Baher Haroun
  • Publication number: 20170077994
    Abstract: A system is provided in which a set of modules each have a substrate on which is mounted a radio frequency (RF) transmitter and/or an RF receiver coupled to a near field communication (NFC) coupler located on the substrate. Each module has a housing that surrounds and encloses the substrate. The housing has a port region on a surface of the housing. Each module has a field confiner located between the NFC coupler and the port region on the housing configured to guide electromagnetic energy emanated from the NFC coupler through the port region to a port region of an adjacent module.
    Type: Application
    Filed: December 15, 2015
    Publication date: March 16, 2017
    Inventors: Swaminathan Sankaran, Bradley Allen Kramer, Benjamin Stassen Cook, Juan Alejandro Herbsommer, Lutz Naumann, Mark W. Morgan, Baher Haroun
  • Patent number: 9590699
    Abstract: A system is provided in which a set of modules each have a substrate on which is mounted a radio frequency (RF) transmitter and/or an RF receiver coupled to a near field communication (NFC) coupler located on the substrate. Each module has a housing that surrounds and encloses the substrate. The housing has a port region on a surface of the housing. Each module has a field confiner located between the NFC coupler and the port region on the housing configured to guide electromagnetic energy emanated from the NFC coupler through the port region to a port region of an adjacent module.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: March 7, 2017
    Assignees: TEXAS INSTUMENTS INCORPORATED, TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventors: Swaminathan Sankaran, Bradley Allen Kramer, Benjamin Stassen Cook, Juan Alejandro Herbsommer, Lutz Naumann, Mark W. Morgan, Baher Haroun
  • Publication number: 20170005628
    Abstract: A circuit includes an amplifier configured to amplify an input signal and generate an output signal. The circuit also includes a tuning network configured to tune frequency response of the amplifier. The tuning network includes at least one tunable capacitor, where the at least one tunable capacitor includes at least one micro-electro mechanical system (MEMS) capacitor. The amplifier could include a first die, the at least one MEMS capacitor could include a second die, and the first die and the second die could be integrated in a single package. The at least one MEMS capacitor could include a MEMS superstructure disposed over a control structure, where the control structure is configured to control the MEMS superstructure and tune the capacitance of the at least one MEMS capacitor.
    Type: Application
    Filed: September 14, 2016
    Publication date: January 5, 2017
    Inventors: Aritra Banerjee, Nathan R. Schemm, Rahmi Hezar, Lei Ding, Baher Haroun
  • Patent number: 9515366
    Abstract: A dielectric waveguide may be manufactured by forming a set of parallel channels in a planar sheet that has a lower dielectric constant value. The set of channels is then filled with a material having a higher dielectric constant value. The planar sheet is sliced into a plurality of strips that each contain one or more of the channels.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: December 6, 2016
    Assignee: Texas Instruments Incorporated
    Inventors: Juan Alejandro Herbsommer, Eunyoung Seok, Baher Haroun
  • Patent number: 9515367
    Abstract: A metallic waveguide is mounted on a multilayer substrate. The metallic waveguide has an open end formed by a top, bottom and sides configured to receive a core member of a dielectric waveguide, and an opposite tapered end formed by declining the top of the metallic waveguide past the bottom of the metallic waveguide and down to contact the multilayer substrate. A pinnacle of the tapered end is coupled to the ground plane element, and the bottom side of the metallic waveguide is in contact with the multiplayer substrate and coupled to the microstrip line.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: December 6, 2016
    Assignee: Texas Instruments Incorporated
    Inventors: Juan Alejandro Herbsommer, Robert Floyd Payne, Gerd Schuppener, Baher Haroun
  • Publication number: 20160323824
    Abstract: A time slot assignment arrangement for ultralow power devices in a wireless communication network is disclosed. The time slot assigned to ultralow power device wakeup frame is identified as ultralow power timeslot using various indicators. The ultralow power timeslot is assigned as contention based timeslot allowing ultralow power devices in the wireless network to extend the interval for synchronizing with the network overcoming the short synchronization interval requirements of wireless communication network resulting in significant improvement in battery life by preserving the power needed for frequent synchronization with the wireless communication network.
    Type: Application
    Filed: February 9, 2016
    Publication date: November 3, 2016
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: ARITON E. XHAFA, BAHER HAROUN
  • Patent number: 9472840
    Abstract: A dielectric waveguide (DWG) has a dielectric core member that has a length L and an oblong cross section. The core member has a first dielectric constant value. A dielectric cladding surrounds the dielectric core member; the cladding has a second dielectric constant value that is lower than the first dielectric constant. A conductive shield layer surrounds a portion of the dielectric cladding.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: October 18, 2016
    Assignee: Texas Instruments Incorporated
    Inventors: Juan Alejandro Herbsommer, Baher Haroun
  • Patent number: 9473078
    Abstract: A circuit includes an amplifier configured to amplify an input signal and generate an output signal. The circuit also includes a tuning network configured to tune frequency response of the amplifier. The tuning network includes at least one tunable capacitor, where the at least one tunable capacitor includes at least one micro-electro mechanical system (MEMS) capacitor. The amplifier could include a first die, the at least one MEMS capacitor could include a second die, and the first die and the second die could be integrated in a single package. The at least one MEMS capacitor could include a MEMS superstructure disposed over a control structure, where the control structure is configured to control the MEMS superstructure and tune the capacitance of the at least one MEMS capacitor.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: October 18, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aritra Banerjee, Nathan R. Schemm, Rahmi Hezar, Lei Ding, Baher Haroun
  • Publication number: 20160276731
    Abstract: An apparatus is provided. In the apparatus, there is an antenna package and an integrated circuit (IC). A circuit trace assembly is secured to the IC. A coupler (with an antenna assembly and a high impedance surface (HIS)) is secured to the circuit trace assembly. An antenna assembly has a window region, a conductive region that substantially surrounds the window region, a circular patch antenna that is in communication with the IC, and an elliptical patch antenna that is located within the window region, that is extends over at least a portion of the circular patch antenna, and that is in communication with the circular patch antenna. The HIS substantially surrounds the antenna assembly.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Inventors: Eunyoung Seok, Srinath Ramaswamy, Brian B. Ginsburg, Vijay B. Rentala, Baher Haroun
  • Publication number: 20160268974
    Abstract: An outphasing amplifier includes a first class-E power amplifier (16-1) having an output coupled to a first conductor (31-1) and an input receiving a first RF drive signal (S1(t)). A first reactive element (CA-1) is coupled between the first conductor and a second conductor (30-1). A second reactive element (LA-1) is coupled between the second conductor and a third conductor (32-1). A second class-E power amplifier (17-1) includes an output coupled to a fourth conductor (31-2) and an input coupled to a second RF drive signal (S2(t)), a third reactive element (CA-3) coupled between the second and fourth conductors. Outputs of the first and second power amplifiers are combined by the first, second and third reactive elements to produce an output current in a load (R). An efficiency enhancement circuit (LEEC-1) is coupled between the first and fourth conductors to improve power efficiency at back-off power levels. Power enhancement circuits (20-1,2) are coupled to the first and fourth conductors, respectively.
    Type: Application
    Filed: May 26, 2016
    Publication date: September 15, 2016
    Inventors: Aritra Banerjee, Joonhoi Hur, Baher Haroun, Nathan Richard Schemm, Rahmi Hezar, Lei Ding