Patents by Inventor Bahman Hekmatshoartabari

Bahman Hekmatshoartabari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220181388
    Abstract: An approach to forming a semiconductor structure is provided. The semiconductor structure includes two adjacent fins on a substrate. A gate stack is on each of the two adjacent fins. The semiconductor structure includes a first source/drain on a first end of each fin of the two adjacent fins and a second source/drain on a second end of each fin of the two adjacent fins. The semiconductor structure includes a switching layer on at least the first source/drain on the first end of each fin of the two adjacent fins and a top electrode on the switching layer. A metal material over the top electrode in the semiconductor structure.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 9, 2022
    Inventors: Alexander Reznicek, Tsung-Sheng Kang, Takashi Ando, Bahman Hekmatshoartabari
  • Publication number: 20220181544
    Abstract: A spin-orbit torque (SOT)-MRAM comprising a first magnetic tunneling junction (MTJ) having a first diameter and having a first critical voltage. A second MTJ having a second diameter and having a second critical voltage, wherein the first diameter and the second diameter are different, wherein the first critical voltage and the second critical voltages are different. A metal rail in direct contact with the first MTJ and the second MTJ, wherein the metal rail injects a spin current in to both the first MTJ and the second MTJ.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 9, 2022
    Inventors: Heng Wu, Alexander Reznicek, Bahman Hekmatshoartabari, Jingyun Zhang
  • Patent number: 11355553
    Abstract: A semiconductor structure may include a vertical field effect transistor, the vertical field effect transistor may include a top source drain, a bottom source drain, and an epitaxial channel and a resistive random access memory below the vertical field effect transistor. The resistive random access memory may include an epitaxial oxide layer, a top electrode, and a bottom electrode. The top electrode, which may function as the bottom source drain of the vertical field effect transistor, may be in direct contact with the epitaxial channel of the vertical field effect transistor. The epitaxial oxide layer may separate the top electrode from the bottom electrode. The top source drain may be arranged between a dielectric material and the epitaxial channel. The dielectric material may be in direct contact with a top surface of the epitaxial channel. The epitaxial oxide layer may be composed of a rare earth oxide.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: June 7, 2022
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Bahman Hekmatshoartabari, Choonghyun Lee, Tak H. Ning
  • Publication number: 20220149184
    Abstract: A Vertical Reconfigurable Field Effect Transistor (VRFET) has a substrate and a vertical channel. The vertical channel is in contact with a top silicide region that forms a lower Schottky junction with the vertical channel and a top silicide region that forms an upper Schottky junction with the vertical channel. The lower silicide region and the upper silicide region each form a source/drain (S/D) of the device. A lower gate stack surrounds the vertical channel and has a lower overlap that encompasses the lower Schottky junction. An upper gate stack surrounds the vertical channel and has an upper overlap that encompasses the upper Schottky junction. The lower gate stack is electrically insulated from the upper gate stack. The lower gate stack can electrically control the lower Schottky junction (S/D). The upper gate stack can electrically control the upper Schottky junction (S/D).
    Type: Application
    Filed: November 10, 2020
    Publication date: May 12, 2022
    Inventors: Bahman Hekmatshoartabari, Alexander Reznicek
  • Publication number: 20220149183
    Abstract: A semiconductor structure may include one or more metal gates, one or more channels below the one or more metal gates, a gate dielectric layer separating the one or more metal gates from the one or more channels, and a high-k material embedded in the gate dielectric layer. Both the high-k material and the gate dielectric layer may be in direct contact with the one or more channels. The high-k material may provide threshold voltage variation in the one or more metal gates. The high-k material is a first high-k material or a second high-k material. The semiconductor structure may only include the first high-k material embedded in the gate dielectric layer. The semiconductor structure may only include the second high-k material embedded in the gate dielectric layer. The semiconductor structure may include both the first high-k material and the second high-k material embedded in the gate dielectric layer.
    Type: Application
    Filed: November 11, 2020
    Publication date: May 12, 2022
    Inventors: Clint Jason Oteri, Alexander Reznicek, Bahman Hekmatshoartabari, Jingyun Zhang, Ruilong Xie
  • Patent number: 11329142
    Abstract: A method for manufacturing a semiconductor device includes forming a fin on a semiconductor substrate, and forming a bottom source/drain region adjacent a base of the fin. In the method, a dielectric layer, a work function metal layer and a first gate metal layer are sequentially deposited on the bottom source/drain region and around the fin. The dielectric layer, the work function metal layer and the first gate metal layer form a gate structure. The method also includes removing the dielectric layer, the work function metal layer and the first gate metal layer from an end portion of the fin, and depositing a second gate metal layer around the end portion of the fin in place of the removed dielectric layer, the removed work function metal layer and the removed first gate metal layer. The second gate metal layer contacts the end portion of the fin.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: May 10, 2022
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Tak H. Ning, Bahman Hekmatshoartabari, Jeng-Bang Yau
  • Patent number: 11315923
    Abstract: A cross-coupled inverter made of nanolayers from a nanosheet stack structure has a left field effect transistor (FET) stack and a right FET stack. The left FET stack has a second left FET stacked on a first left FET. The first and second left FETs have opposite types. The right FET stack has a second right FET stacked on a first right FET. The first and second right FETs have opposite types. The first left and first right FET have a first common source drain (S/D). The left FET stack has a left gate stack surrounding the one or more first left FET channel layers and the one or more second left FET channel layers. The right FET stack has a right gate stack surrounding the one or more first right FET channel layers and the one or more second right FET channel layers. In some embodiments the left/right gate stack has a left/right center gate stack layer and one or more left/right gate stack layers. The center gate stack layers are thicker than the gate stack layers and are between the first and second FETs.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: April 26, 2022
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Karthik Balakrishnan, Bahman Hekmatshoartabari
  • Patent number: 11315938
    Abstract: A semiconductor device including a first nanosheet stack of two memory cells including a lower nanosheet stack on a substrate including alternating layers of a first work function metal and a semiconductor channel material vertically aligned and stacked one on top of another, and an upper nanosheet stack including alternating layers of a second work function metal and the semiconductor channel material vertically aligned and stacked one on top of another, the upper nanosheet stack vertically aligned and stacked on the lower nanosheet stack, where a first memory cell of the two memory cells including the lower nanosheet stack includes a first threshold voltage and a second memory cell of the two memory cells including the upper nanosheet stack includes a second threshold voltage, where the first threshold voltage is different than the second threshold voltage. Forming a semiconductor device including a first nanosheet stack of two memory cells.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: April 26, 2022
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Ruilong Xie, Karthik Balakrishnan, Bahman Hekmatshoartabari
  • Publication number: 20220108997
    Abstract: A circuit may include a low-voltage flash memory integrated with a vertical field effect transistor and a non-volatile memory element. The low-voltage flash memory may be coupled to the non-volatile memory element by the vertical field effect transistor, one or more bit-lines, and one or more word-lines. The low-voltage flash memory may provide a lower significance conductance and the non-volatile memory element may provide a higher significance conductance. The low-voltage flash memory may include a source and a drain. The source may be separated from the drain by an epitaxial channel. The low-voltage flash memory may include a floating gate. The floating gate may be separated from the epitaxial channel by a first dielectric layer. The low-voltage flash memory may include a control gate. The control gate may be separated from the floating gate by a second dielectric layer.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 7, 2022
    Inventors: Bahman Hekmatshoartabari, Alexander Reznicek, Takashi Ando, Nanbo Gong
  • Publication number: 20220093794
    Abstract: A Vertical Field Effect Transistor (VFET) and/or a one transistor dynamic random access memory 1T DRAM that has a substrate with a horizontal substrate surface, a source disposed on the horizontal substrate surface, a drain, and a channel. The channel has a channel top, a channel bottom, a first channel side, a second channel side, and two channel ends. The channel top is connected to the drain. The channel bottom is connected to the source. The channel is vertical and perpendicular to the substrate surface. A first gate stack interfaces with the first channel side and a second gate stack interfaces with the second channel side. A single external gate connection electrically connects the first gate stack and the second gate stack A gate bias (voltage) applied on the single external gate connection biases the first channel side in accumulation and biases the second channel side in inversion. The first gate stack is made of a first high-k dielectric layer and a first gate metal layer.
    Type: Application
    Filed: September 19, 2020
    Publication date: March 24, 2022
    Inventors: Alexander Reznicek, Karthik Balakrishnan, Bahman Hekmatshoartabari, Clint Jason Oteri
  • Publication number: 20220085013
    Abstract: A cross-coupled inverter made of nanolayers from a nanosheet stack structure has a left field effect transistor (FET) stack and a right FET stack. The left FET stack has a second left FET stacked on a first left FET. The first and second left FETs have opposite types. The right FET stack has a second right FET stacked on a first right FET. The first and second right FETs have opposite types. The first left and first right FET have a first common source drain (S/D). The left FET stack has a left gate stack surrounding the one or more first left FET channel layers and the one or more second left FET channel layers. The right FET stack has a right gate stack surrounding the one or more first right FET channel layers and the one or more second right FET channel layers. In some embodiments the left/right gate stack has a left/right center gate stack layer and one or more left/right gate stack layers. The center gate stack layers are thicker than the gate stack layers and are between the first and second FETs.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Inventors: Alexander Reznicek, Karthik Balakrishnan, Bahman Hekmatshoartabari
  • Patent number: 11271108
    Abstract: A Vertical Function Field Effect Transistor (VIFET) is disclosed with reduced noise and input capacitance and high input impedance. The VIFET has a substrate; a source disposed on the substrate; a drain, and a channel. The vertical channel has one or more channel sidewall surfaces. The channel sidewall surfaces have a total or aggregate channel sidewall surface area. A semiconductor gate grown on one or more of the channel sidewall surfaces has a thickness below 10 nanometers (nm), or between 3 am and 10 om, that reduces transistor noise. The interface surface area between the conductive (e.g. metal) external electrical gate contact and the contacted surface of the semiconductor gate is minimized to further reduce transistor noise.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: March 8, 2022
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Alexander Reznicek, Karthik Balakrishnan
  • Patent number: 11256883
    Abstract: Systems, methods, and electronic circuits facilitating embedded sensor chips in polymer-based coatings are provided. In one example, a method comprises fabricating an electronic circuit, the electronic circuit comprising one or more semiconductor devices, one or more sensors, and a communication element; encapsulating the electronic circuit within an insulator, resulting in an encapsulated circuit; and dispersing the encapsulated circuit into a lacquer solution comprising a polymer carrier and a solvent.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: February 22, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Homa Alemzadeh, Maryam Ashoori, Bahman Hekmatshoartabari, Elham Khabiri
  • Patent number: 11251185
    Abstract: A semiconductor device comprises a substrate, a first source/drain region on the substrate, a first channel region extending vertically with respect to the substrate from the first source/drain region, a second source/drain region on the first channel region, a third source/drain region on the second source/drain region, a second channel region extending vertically with respect to the substrate from the third source/drain region, a fourth source/drain region on the second channel region, a first gate region formed around from the first channel region, and a second gate region formed around the second channel region.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: February 15, 2022
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Bahman Hekmatshoartabari, Alexander Reznicek, Jeng-Bang Yau
  • Patent number: 11222922
    Abstract: A two-transistor-two-resistor (2T2R) resistive random access memory (ReRAM) structure, and a method for forming the same includes two vertical field effect transistors (VFETs) formed on a substrate, each VFET includes an epitaxial region located above a channel region and below a dielectric cap. The epitaxial region includes two opposing protruding regions of triangular shape that extend horizontally beyond the channel region. A metal gate material is disposed on and around the channel region. A portion of the metal gate material is located between the two VFETs. A ReRAM stack is deposited within two openings adjacent to a side of each VFET that is opposing the portion of the metal gate material located between the two VFETs. A portion of the epitaxial region in direct contact with the ReRAM stack acts as a bottom electrode for the ReRAM structure.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: January 11, 2022
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Bahman Hekmatshoartabari, Takashi Ando
  • Patent number: 11187672
    Abstract: A method for making a hydrophobic biosensing device includes forming alternating layers over a top and sides of a fin on a dielectric layer to form a stack of layers. The stack of layers are planarized to expose the top of the fin. The fin and every other layer are removed to form a cathode group of fins and an anode group of fins. A hydrophobic surface on the two groups of fins.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: November 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Karthik Balakrishnan, Stephen W. Bedell, Pouya Hashemi, Bahman Hekmatshoartabari, Alexander Reznicek
  • Patent number: 11189701
    Abstract: Vertical bipolar junction transistors (VBJTs), each with one or more resistors connected in a circuit in different circuit configurations, are disclosed. The VBJT has an emitter substructure that includes an emitter layer, a collector, an intrinsic base, one or more doped epitaxy regions, and one or more resistors. The intrinsic base, the doped epitaxy region(s), and the resistor(s) are stacked upon one another in a channel between the emitter layer and the collector. Various circuit configurations and structures are described including a common-collector circuit, a common-emitter circuit, and an emitter-degenerate circuit. Methods of making these configuration/structures are disclosed.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: November 30, 2021
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Bahman Hekmatshoartabari, Karthik Balakrishnan
  • Publication number: 20210365819
    Abstract: An apparatus for performing fuzzy template matching includes multiple damped oscillators arranged in at least one two-dimensional matrix, each of the damped oscillators being capacitively coupled to at least one adjacent damped oscillator in the matrix. The apparatus further includes peripheral circuitry coupled with the damped oscillators. The peripheral circuitry is configured to selectively interface with the damped oscillators, as a function of one or more control signals supplied to the peripheral circuitry, and to generate at least one output signal indicative of an accuracy of matching between a template pattern and an input pattern.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Inventor: Bahman Hekmatshoartabari
  • Patent number: 11183115
    Abstract: A method for forming a pixel circuit includes forming transistors on a substrate; forming a passivation layer over the transistors; forming a contact hole to a source of a transistor; forming a transparent conductor that forms a contact in the contact hole and a resistor to control pixel current; and forming an organic light emitting diode (OLED) with an anode connecting to the resistor.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: November 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Patent number: 11182670
    Abstract: A classifier system implementing an equivalent deep neural network (DNN) includes a weight block, classification block, row selector, and sensor array coupled with the weight block, classification block and row selector. The sensor array includes row lines, column lines, a data integration line, an integration start line, and multiple sensor cells corresponding to respective neurons in an input layer of the equivalent DNN. The sensor cells share a common terminal connected to the data integration line, the row lines are controlled by the row selector, and the column lines receive respective weight values from the weight block. The classification block includes a first integrator receiving a signal generated on the data integration line when the integration start line is selected, and a first thresholding unit receiving a signal from the first integrator. The first thresholding unit is coupled to second integrators and second thresholding units arranged in a two-dimensional matrix.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: November 23, 2021
    Assignee: International Business Machines Corporation
    Inventor: Bahman Hekmatshoartabari