Patents by Inventor Bahram Jalali

Bahram Jalali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10036699
    Abstract: An imaging flow cytometry apparatus and method which allows registering multiple locations across a cell, and/or across multiple flow channels, in parallel using radio-frequency-tagged emission (FIRE) coupled with a parallel optical detection scheme toward increasing analysis throughput. An optical source is modulated by multiple RF frequencies to produce an optical interrogation beam having a spatially distributed beat frequency. This beam is directed to one or more focused streams of cells whose responsive fluorescence, in different frequencies, is registered in parallel by an optical detector.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: July 31, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Eric Diebold, Brandon Buckley
  • Patent number: 9983132
    Abstract: Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 29, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Eric D. Diebold, Bahram Jalali, Brandon Buckley
  • Patent number: 9903804
    Abstract: A label-free imaging-based flow cytometer that measures size and cell protein concentration simultaneously is disclosed. Cell protein concentration adds a parameter to cell classification that improves the specificity and sensitivity of flow cytometers without the requirement of cell labeling. The system uses coherent dispersive Fourier transform to perform phase imaging at flow speeds as high as a few meters per second. To retrieve cell information in real-time, an analog signal processing system based on quadrature phase demodulation is described.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: February 27, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Ata Mahjoubfar
  • Publication number: 20180003560
    Abstract: Methods and apparatus for multi-probe photonic time-stretch spectral measurements are described. Methods allow for capturing real-time and single-shot non-overlapping spectral bands from multiple probes simultaneously, using Time-Stretch Dispersive Fourier Transform (TS-DFT) systems combined with Wavelength Division Multiplexing (WDM) device.
    Type: Application
    Filed: June 7, 2017
    Publication date: January 4, 2018
    Applicants: The Regents of the University of California, Time Photonics, Inc.
    Inventors: MohammadHossein Asghari, Bahram Jalali, Paul Trinh
  • Publication number: 20170350803
    Abstract: An imaging flow cytometry apparatus and method which allows registering multiple locations across a cell, and/or across multiple flow channels, in parallel using radio-frequency-tagged emission (FIRE) coupled with a parallel optical detection scheme toward increasing analysis throughput. An optical source is modulated by multiple RF frequencies to produce an optical interrogation beam having a spatially distributed beat frequency. This beam is directed to one or more focused streams of cells whose responsive fluorescence, in different frequencies, is registered in parallel by an optical detector.
    Type: Application
    Filed: August 8, 2017
    Publication date: December 7, 2017
    Inventors: Bahram Jalali, Eric Diebold, Brandon Buckley
  • Patent number: 9835840
    Abstract: An apparatus and method for ultrafast real-time optical imaging that can be used for imaging dynamic events such as microfluidics or laser surgery is provided. The apparatus and methods encode spatial information from a sample into a back reflection of a two-dimensional spectral brush that is generated with a two-dimensional disperser and a light source that is mapped in to the time domain with a temporal disperser. The temporal waveform is preferably captured by an optical detector, converted to an electrical signal that is digitized and processed to provide two dimensional and three dimensional images. The produced signals can be optically or electronically amplified. Detection may be improved with correlation matching against a database in the time domain or the spatial domain. Embodiments for endoscopy, microscopy and simultaneous imaging and laser ablation with a single fiber are illustrated.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: December 5, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Keisuke Goda, Kevin Kin-Man Tsia
  • Patent number: 9784661
    Abstract: An imaging flow cytometry apparatus and method which allows registering multiple locations across a cell, and/or across multiple flow channels, in parallel using radio-frequency-tagged emission (FIRE) coupled with a parallel optical detection scheme toward increasing analysis throughput. An optical source is modulated by multiple RF frequencies to produce an optical interrogation beam having a spatially distributed beat frequency. This beam is directed to one or more focused streams of cells whose responsive fluorescence, in different frequencies, is registered in parallel by an optical detector.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: October 10, 2017
    Assignee: The Regents of the University of California
    Inventors: Bahram Jalali, Eric Diebold, Brandon Buckley
  • Publication number: 20170140545
    Abstract: Object and shape detection in digital images utilizing edge detection is described. In a first edge detection approach, phase transformation is utilized in the frequency domain, such as in response to Fourier transform, followed by use of a frequency-domain phase kernel and inverse-Fourier transform. Edge detection is also provided using a phase transform in the spatial domain utilizing a convolution approach. In a second edge detection approach, phase stretching is utilized, such as in combination with phase histogramming along with thresholding and morphological operations. Numerous example images are provided illustrating benefits of the disclosed technology with different applications and under different conditions.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 18, 2017
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Mohammad Asghari
  • Publication number: 20170138857
    Abstract: Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
    Type: Application
    Filed: July 27, 2016
    Publication date: May 18, 2017
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Eric D. Diebold, Bahram Jalali, Brandon Buckley
  • Patent number: 9479192
    Abstract: A method and apparatus for compression of digital and analog data utilizing an anamorphic spectrum transformation to warp an analog or digital signal to provide time-bandwidth compression after sampling is performed on the warped signal. The anamorphic spectrum transformation performs reallocating samples to assign more samples to fine features with high frequency waveform portions and fewer samples to coarse features with low frequency portions of the analog temporal signal, resulting in shorter record length and fewer number of samples.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: October 25, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Mohammad H. Asghari
  • Patent number: 9423353
    Abstract: Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: August 23, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Eric D. Diebold, Bahram Jalali, Brandon Buckley
  • Publication number: 20160223453
    Abstract: A label-free imaging-based flow cytometer that measures size and cell protein concentration simultaneously is disclosed. Cell protein concentration adds a parameter to cell classification that improves the specificity and sensitivity of flow cytometers without the requirement of cell labeling. The system uses coherent dispersive Fourier transform to perform phase imaging at flow speeds as high as a few meters per second. To retrieve cell information in real-time, an analog signal processing system based on quadrature phase demodulation is described.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 4, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Ata Mahjoubfar
  • Publication number: 20160006453
    Abstract: A method and apparatus for compression of digital and analog data utilizing an anamorphic spectrum transformation to warp an analog or digital signal to provide time-bandwidth compression after sampling is performed on the warped signal. The anamorphic spectrum transformation performs reallocating samples to assign more samples to fine features with high frequency waveform portions and fewer samples to coarse features with low frequency portions of the analog temporal signal, resulting in shorter record length and fewer number of samples.
    Type: Application
    Filed: June 24, 2015
    Publication date: January 7, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Mohammad H. Asghari
  • Publication number: 20160003741
    Abstract: Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
    Type: Application
    Filed: July 6, 2015
    Publication date: January 7, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Eric D. Diebold, Bahram Jalali, Brandon Buckley
  • Publication number: 20150373369
    Abstract: A feature-selective compression method and system are described which uses a transformation causing feature-selective stretching of the image being compressed. As a result, additional samples are allocated to sharp features where they are needed, and less to coarse features where they are redundant. The method can be applied to still and video images, whether they are monochrome or color images or 3D images, and operates in open-loop fashion and does not require prior knowledge of the image. The method can be applied by itself or combined with other types of compression (i.e., JPEG, WebP) to further compress the image.
    Type: Application
    Filed: June 24, 2015
    Publication date: December 24, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Mohammad H. Asghari
  • Publication number: 20150205090
    Abstract: An apparatus and method for ultrafast real-time optical imaging that can be used for imaging dynamic events such as microfluidics or laser surgery is provided. The apparatus and methods encode spatial information from a sample into a back reflection of a two-dimensional spectral brush that is generated with a two-dimensional disperser and a light source that is mapped in to the time domain with a temporal disperser. The temporal waveform is preferably captured by an optical detector, converted to an electrical signal that is digitized and processed to provide two dimensional and three dimensional images. The produced signals can be optically or electronically amplified. Detection may be improved with correlation matching against a database in the time domain or the spatial domain. Embodiments for endoscopy, microscopy and simultaneous imaging and laser ablation with a single fiber are illustrated.
    Type: Application
    Filed: January 30, 2015
    Publication date: July 23, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Keisuke Goda, Kevin Kin-Man Tsia
  • Patent number: 8987649
    Abstract: An apparatus and method for ultrafast real-time optical imaging that can be used for imaging dynamic events such as microfluidics or laser surgery is provided. The apparatus and methods encode spatial information from a sample into a back reflection of a two-dimensional spectral brush that is generated with a two-dimensional disperser and a light source that is mapped in to the time domain with a temporal disperser. The temporal waveform is preferably captured by an optical detector, converted to an electrical signal that is digitized and processed to provide two dimensional and three dimensional images. The produced signals can be optically or electronically amplified. Detection may be improved with correlation matching against a database in the time domain or the spatial domain. Embodiments for endoscopy, microscopy and simultaneous imaging and laser ablation with a single fiber are illustrated.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: March 24, 2015
    Assignee: The Regents of the University of California
    Inventors: Bahram Jalali, Keisuke Goda, Kevin Kin-Man Tsia
  • Patent number: 8873132
    Abstract: Methods and systems are provided for generation and detection of rogue waves, including hydrodynamic rogue waves and optical rogue waves. A method for generating an optical rogue wave comprises the steps of generating an input pulse into a nonlinear optical medium, and perturbing the input pulse by directing a narrow-band seed radiation into the input pulse. The seed radiation has a frequency and timing to generate broadband radiation within the nonlinear optical medium.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: October 28, 2014
    Assignee: The Regents of the University of California
    Inventors: Daniel R. Solli, Bahram Jalali, Claus Ropers
  • Patent number: 8870060
    Abstract: A barcode reading apparatus and method in which the spectrum of a probe light is first Fourier-transformed into space, directed upon a barcode, and then Fourier-transformed converting the spectrally encoded barcode pattern to a time domain waveform. In one implementation, the Fourier transformation from the spectrum domain into a spatial domain is performed by a dispersive element, while the Fourier transformation from the spectrally encoded barcode pattern to a time domain waveform is performed by group-velocity dispersion (GVD). The temporally encoded barcode pattern is detected by a photodetector, digitized by a digitizer, and analyzed by a digital signal processor. The invention is applicable to a number of fields which involve the reading of one- and two-dimensional barcodes, displacement sensing, surface measurements, measurement of width and gap, flow cytometry, reading of optical media, presense or absence detection, and other related fields.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: October 28, 2014
    Assignee: The Regents of the University of California
    Inventors: Bahram Jalali, Keisuke Goda, Kevin Kin-Man Tsia
  • Publication number: 20140313310
    Abstract: An apparatus and method for ultrafast real-time optical imaging that can be used for imaging dynamic events such as microfluidics or laser surgery is provided. The apparatus and methods encode spatial information from a sample into a back reflection of a two-dimensional spectral brush that is generated with a two-dimensional disperser and a light source that is mapped in to the time domain with a temporal disperser. The temporal waveform is preferably captured by an optical detector, converted to an electrical signal that is digitized and processed to provide two dimensional and three dimensional images. The produced signals can be optically or electronically amplified. Detection may be improved with correlation matching against a database in the time domain or the spatial domain. Embodiments for endoscopy, microscopy and simultaneous imaging and laser ablation with a single fiber are illustrated.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 23, 2014
    Inventors: Bahram Jalali, Keisuke Goda, Kevin Kin-Man Tsia