Patents by Inventor Bainian Qian

Bainian Qian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160375543
    Abstract: A chemical mechanical polishing pad is provided, comprising: a chemical mechanical polishing layer having a polishing surface; wherein the chemical mechanical polishing layer is formed by combining (a) a poly side (P) liquid component, comprising: an amine-carbon dioxide adduct; and, at least one of a polyol, a polyamine and a alcohol amine; and (b) an iso side (I) liquid component, comprising: polyfunctional isocyanate; wherein the chemical mechanical polishing layer has a porosity of ?10 vol %; wherein the chemical mechanical polishing layer has a Shore D hardness of <40; and, wherein the polishing surface is adapted for polishing a substrate. Methods of making and using the same are also provided.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, David Michael Veneziale, Yuhua Tong, Diego Lugo, Jeffrey B. Miller, George C. Jacob, Marty W. DeGroot, Tony Quan Tran, Marc R. Stack, Andrew Wank, Fengji Yeh
  • Publication number: 20160375555
    Abstract: A method of forming a chemical mechanical polishing pad polishing layer is provided, including: providing a mold having a base with a negative of a groove pattern; providing a poly side (P) liquid component; providing an iso side (I) liquid component; providing a pressurized gas; providing an axial mixing device; introducing the poly side (P) liquid component, the iso side (I) liquid component and the pressurized gas to the axial mixing device to form a combination; discharging the combination from the axial mixing device at a velocity of 5 to 1,000 m/sec toward the base; allowing the combination to solidify into a cake; deriving the chemical mechanical polishing pad polishing layer from the cake; wherein the chemical mechanical polishing pad polishing layer has a polishing surface with the groove pattern formed into the polishing surface; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Application
    Filed: May 24, 2016
    Publication date: December 29, 2016
    Inventors: David Michael Veneziale, Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, Yuhua Tong, Jeffrey B. Miller, Diego Lugo, George C. Jacob, Marty W. DeGroot, Andrew Wank, Fengji Yeh
  • Patent number: 9484212
    Abstract: A chemical mechanical polishing method is provided comprising: providing a substrate, wherein the substrate comprises a silicon oxide and a silicon nitride; providing a polishing slurry; providing polishing pad, comprising: a polishing layer having a composition that is a reaction product of ingredients, comprising: a polyfunctional isocyanate and an amine initiated polyol curative; wherein the stoichiometric ratio of the amine initiated polyol curative to the polyfunctional isocyanate is selected to tune the removal rate selectivity of the polishing layer; creating dynamic contact between the polishing surface and the substrate; dispensing the polishing slurry on the polishing pad at or near the interface between the polishing surface and the substrate; and, removing at least some of the silicon oxide and the silicon nitride from the substrate.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: November 1, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Techologies LLC
    Inventors: Bainian Qian, Yi Guo, Marty W. DeGroot, George C. Jacob
  • Patent number: 9481070
    Abstract: The invention provides a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates. The polishing pad is a cast polyurethane polymeric matrix formed from an isocyanate-terminated molecule and a curative agent. The cast polyurethane polymeric matrix contains 4.2 to 7.5 weight percent fluid-filled microspheres in the isocyanate-terminated molecule. The fluid-filled-microspheres is polymeric and has an average diameter of 10 to 80 ?m and the polishing pad having a conditioner sensitivity (CS) of 0 to 2.6.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: November 1, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, George C. Jacob, Kun-Ming Tsai
  • Patent number: 9475168
    Abstract: The polishing pad is suitable for polishing or planarizing at least one of semiconductor, optical and magnetic substrates. The polishing pad has a polishing surface, an opening through the polishing pad and a transparent window within the opening in the polishing pad. The transparent window has a concave surface with a depth that increases with use of the polishing pad. A signal region slopes downward into the central region for facilitating debris removal and a debris drainage groove extending through the central region into the polishing pad. Rotating the polishing pad with polishing fluid in the debris drainage groove sends debris from the central region into the polishing pad through the debris drainage groove.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: October 25, 2016
    Inventors: Bainian Qian, Ethan Scott Simon, George C. Jacob
  • Patent number: 9457449
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer having a polishing surface; wherein the polishing layer comprises a continuous non-fugitive polymeric phase and a discontinuous non-fugitive polymeric phase; wherein the continuous non-fugitive polymeric phase has a plurality of periodic recesses; wherein the plurality of periodic recesses are occupied with the discontinuous non-fugitive polymeric phase; wherein the continuous non-fugitive polymeric phase has an open cell porosity of ?6 vol %; wherein the discontinuous non-fugitive polymeric phase contains an open cell porosity of ?10 vol %; and, wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: October 4, 2016
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Teresa Brugarolas Brufau, Julia Kozhukh, Bainian Qian
  • Publication number: 20160279757
    Abstract: The polishing pad is suitable for polishing or planarizing at least one of semiconductor, optical and magnetic substrates. The polishing pad has a polishing surface, an opening through the polishing pad and a transparent window within the opening in the polishing pad. The transparent window has a concave surface with a depth that increases with use of the polishing pad. A signal region slopes downward into the central region for facilitating debris removal and a debris drainage groove extending through the central region into the polishing pad. Rotating the polishing pad with polishing fluid in the debris drainage groove sends debris from the central region into the polishing pad through the debris drainage groove.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Inventors: Bainian Qian, Ethan Scott Simon, George C. Jacob
  • Patent number: 9452507
    Abstract: The invention provides a method of manufacturing a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates. The method obtains a liquid polyurethane material formed from an isocyanate-terminated molecule and a curative agent. The liquid polyurethane material contains 4.2 to 7.5 weight percent fluid-filled polymeric microspheres in the isocyanate-terminated molecule. The fluid-filled polymeric microspheres are a blend of preexpanded and unexpanded fluid-filled polymeric microspheres. The liquid polyurethane material contains a blend of preexpanded and unexpanded fluid-filled polymeric microspheres having a relative viscosity ? ? 0 of 1.1 to 7. Then the liquid polyurethane material solidifies into a polyurethane matrix that contains preexpanded and expanded fluid-filled polymeric microsphere for forming the polishing pad.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 27, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, George C. Jacob
  • Patent number: 9446498
    Abstract: A chemical mechanical polishing pad is provided having a polishing layer; an endpoint detection window; subpad; and, a stack adhesive; wherein the subpad includes plurality of apertures in optical communication with the endpoint detection window; and, wherein the polishing surface of the polishing layer is adapted for polishing of a substrate.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: September 20, 2016
    Assignee: Rohm and Hass Electronic Materials CMP Holdings, Inc.
    Inventors: Joseph So, Bainian Qian, Janet Tesfai
  • Publication number: 20160263721
    Abstract: A chemical mechanical polishing pad is provided having a polishing layer; an endpoint detection window; subpad; and, a stack adhesive; wherein the subpad includes plurality of apertures in optical communication with the endpoint detection window; and, wherein the polishing surface of the polishing layer is adapted for polishing of a substrate.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 15, 2016
    Inventors: Joseph So, Bainian Qian, Janet Tesfai
  • Publication number: 20160176013
    Abstract: The invention provides a method of manufacturing a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates. The method obtains a liquid polyurethane material formed from an isocyanate-terminated molecule and a curative agent. The liquid polyurethane material has a Tgel temperature and contains fluid-filled polymeric microspheres. The fluid-filled polymeric microspheres are a blend of preexpanded and unexpanded fluid-filled polymeric microspheres. The preexpanded and unexpanded fluid-filled polymeric microspheres each have a Tstart temperature where diameter of the preexpanded and unexpanded fluid-filled polymeric microspheres increases and a Tmax temperature where gas escapes to decrease diameter of the expanded and unexpanded fluid-filled polymeric microspheres. The cured polyurethane matrix contains preexpanded and expanded fluid-filled polymeric microspheres.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Bainian Qian, Andrew Wank
  • Publication number: 20160176022
    Abstract: The invention provides a method of manufacturing a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates. The method obtains a liquid polyurethane material formed from an isocyanate-terminated molecule and a curative agent. The liquid polyurethane material contains 4.2 to 7.5 weight percent fluid-filled polymeric microspheres in the isocyanate-terminated molecule. The fluid-filled polymeric microspheres are a blend of preexpanded and unexpanded fluid-filled polymeric microspheres. The liquid polyurethane material contains a blend of preexpanded and unexpanded fluid-filled polymeric microspheres having a relative viscosity ? ? 0 of 1.1 to 7. Then the liquid polyurethane material solidifies into a polyurethane matrix that contains preexpanded and expanded fluid-filled polymeric microsphere for forming the polishing pad.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Bainian Qian, George C. Jacob
  • Publication number: 20160176012
    Abstract: The invention provides a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates. The polishing pad is a cast polyurethane polymeric matrix formed from an isocyanate-terminated molecule and a curative agent. The cast polyurethane polymeric matrix contains 4.2 to 7.5 weight percent fluid-filled microspheres in the isocyanate-terminated molecule. The fluid-filled-microspheres is polymeric and has an average diameter of 10 to 80 ?m and the polishing pad having a conditioner sensitivity (CS) of 0 to 2.6.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Bainian Qian, George C. Jacob, Kun-Ming Tsai
  • Patent number: 9333620
    Abstract: A chemical mechanical polishing pad is provided containing a polishing layer having a polishing surface; and, an endpoint detection window; wherein the endpoint detection window comprises a reaction product of ingredients, comprising: an isocyanate terminated urethane prepolymer having 5.5 to 9.5 wt % unreacted NCO groups, wherein the isocyanate terminated urethane prepolymer is a reaction product of ingredients comprising: an aliphatic polyfunctional isocyanate; and, a prepolymer polyol; and, a curative system, comprising: 0 to 99 wt % of a difunctional curative; and, 1 to 100 wt % of an amine initiated polyol curative having at least one nitrogen atom per molecule and an average of at least three hydroxyl groups per molecule. Also provide are methods of making and using the chemical mechanical polishing pad.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: May 10, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Marty W. DeGroot
  • Patent number: 9314897
    Abstract: A chemical mechanical polishing pad is provided containing a polishing layer having a polishing surface; and, an endpoint detection window; wherein the endpoint detection window comprises a reaction product of ingredients, comprising: an isocyanate terminated urethane prepolymer having 5.5 to 9.5 wt % unreacted NCO groups, wherein the isocyanate terminated urethane prepolymer is a reaction product of ingredients comprising: an aromatic polyfunctional isocyanate; and, a prepolymer polyol; and, a curative system, comprising: 0 to 90 wt % of a difunctional curative; and, 10 to 100 wt % of an amine initiated polyol curative having at least one nitrogen atom per molecule and an average of at least three hydroxyl groups per molecule. Also provide are methods of making and using the chemical mechanical polishing pad.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: April 19, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Marty W. DeGroot
  • Publication number: 20160052103
    Abstract: The polishing pad is for planarizing at least one of semiconductor, optical and magnetic substrates. The polishing pad includes a cast polyurethane polymeric material formed from a prepolymer reaction of H12MDI/TDI with polytetramethylene ether glycol to form an isocyanate-terminated reaction product. The isocyanate-terminated reaction product has 8.95 to 9.25 weight percent unreacted NCO and has an NH2 to NCO stoichiometric ratio of 102 to 109 percent. The isocyanate-terminated reaction product is cured with a 4,4?-methylenebis(2-chlororaniline) curative agent. The cast polyurethane polymeric material, as measured in a non-porous state, having a shear storage modulus, G? of 250 to 350 MPa as measured with a torsion fixture at 30° C. and 40° C. and a shear loss modulus, G? of 25 to 30 MPa as measured with a torsion fixture at 40° C. The polishing pad having a porosity of 20 to 50 percent by volume and a density of 0.60 to 0.95 g/cm3.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 25, 2016
    Inventors: Bainian Qian, Raymond L. Lavoie, JR., Marty W. DeGroot, Benson Lee
  • Patent number: 9259820
    Abstract: A chemical mechanical polishing pad is provided having a polishing layer; and an endpoint detection window incorporated into the chemical mechanical polishing pad, wherein the endpoint detection window is a plug in place window; wherein the endpoint detection window comprises a reaction product of ingredients, comprising: a window prepolymer, and, a window curative system, comprising: at least 5 wt % of a window difunctional curative; at least 5 wt % of a window amine initiated polyol curative; and, 25 to 90 wt % of a window high molecular weight polyol curative.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: February 16, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Marty W. DeGroot, James Murnane, Angus Repper, Michelle Jensen, Jeffrey J. Hendron, John G. Nowland, David B. James, Fengji Yeh
  • Patent number: 9259821
    Abstract: A chemical mechanical polishing pad is provided containing: a polyurethane polishing layer having a composition and a polishing surface; wherein the polyurethane polishing layer composition exhibits an acid number of ?0.5 mg (KOH)/g; wherein the polishing surface is adapted for polishing a substrate; and, wherein the polishing surface exhibits a conditioning tolerance of ?80%.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: February 16, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Marty W. DeGroot, Mark F. Sonnenschein
  • Patent number: 9238296
    Abstract: A multilayer chemical mechanical polishing pad stack is provided containing: a polishing layer; a rigid layer; and, a hot melt adhesive bonding the polishing layer to the rigid layer; wherein the polishing layer exhibits a density of greater than 0.6 g/cm3; a Shore D hardness of 5 to 40; an elongation to break of 100 to 450%; and, a cut rate of 25 to 150 ?m/hr; and, wherein the polishing layer has a polishing surface adapted for polishing the substrate.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 19, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: James Murnane, Bainian Qian, John G. Nowland, Michelle K. Jensen, Jeffrey James Hendron, Marty W. DeGroot, David B. James, Fengji Yeh
  • Patent number: 9238295
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer; a plug in place endpoint detection window block; a rigid layer; and, a hot melt adhesive bonding the polishing layer to the rigid layer; wherein the polishing layer comprises the reaction product of ingredients, including: a polyfunctional isocyanate; and, a curative package; wherein the curative package contains an amine initiated polyol curative and a high molecular weight polyol curative; wherein the polishing layer exhibits a density of greater than 0.6 g/cm3; a Shore D hardness of 5 to 40; an elongation to break of 100 to 450%; and, a cut rate of 25 to 150 ?m/hr; and, wherein the polishing layer has a polishing surface adapted for polishing the substrate. Also provide are methods of making and using the chemical mechanical polishing pad.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 19, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Michelle K. Jensen, Marty W. DeGroot, Angus Repper, James Murnane, Jeffrey James Hendron, John G. Nowland, David B. James, Fengji Yeh