Patents by Inventor Balasubramanian S. Haran

Balasubramanian S. Haran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9190313
    Abstract: Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: November 17, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventors: Bruce B. Doris, Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Pranita Kerber, Arvind Kumar, Shom Ponoth
  • Patent number: 9178019
    Abstract: A method for fabricating a field effect transistor (FET) device includes forming a plurality of semiconductor fins on a substrate, removing a semiconductor fin of the plurality of semiconductor fins from a portion of the substrate, forming an isolation fin that includes a dielectric material on the substrate on the portion of the substrate, and forming a gate stack over the plurality of semiconductor fins and the isolation fin.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: November 3, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20150255538
    Abstract: Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 10, 2015
    Inventors: Bruce B. Doris, Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Pranita Kerber, Arvind Kumar, Shom Ponoth
  • Publication number: 20150235909
    Abstract: A method for fabricating a field effect transistor device includes removing a portion of a first semiconductor layer and a first insulator layer to expose a portion of a second semiconductor layer, wherein the second semiconductor layer is disposed on a second insulator layer, the first insulator layer is disposed on the second semiconductor layer, and the first semiconductor layer is disposed on the first insulator layer, removing portions of the first semiconductor layer to form a first fin disposed on the first insulator layer and removing portions of the second semiconductor layer to form a second fin disposed on the second insulator layer, and forming a first gate stack over a portion of the first fin and forming a second gate stack over a portion of the second fin.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 20, 2015
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20150228672
    Abstract: A method for fabricating a field effect transistor device includes removing a portion of a first semiconductor layer and a first insulator layer to expose a portion of a second semiconductor layer, wherein the second semiconductor layer is disposed on a second insulator layer, the first insulator layer is disposed on the second semiconductor layer, and the first semiconductor layer is disposed on the first insulator layer, removing portions of the first semiconductor layer to form a first fin disposed on the first insulator layer and removing portions of the second semiconductor layer to form a second fin disposed on the second insulator layer, and forming a first gate stack over a portion of the first fin and forming a second gate stack over a portion of the second fin.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 9093558
    Abstract: A substrate is provided, having formed thereon a first region and a second region of a complementary type to the first region. A gate dielectric is deposited over the substrate, and a first full metal gate stack is deposited over the gate dielectric. The first full metal gate stack is removed over the first region to produce a resulting structure. Over the resulting structure, a second full metal gate stack is deposited, in contact with the gate dielectric over the first region. The first and second full metal gate stacks are encapsulated.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: July 28, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lisa F. Edge, Hemanth Jagannathan, Balasubramanian S. Haran
  • Patent number: 9087921
    Abstract: An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: July 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Balasubramanian S. Haran, Ali Khakifirooz
  • Patent number: 9087741
    Abstract: An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: July 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Balasubramanian S. Haran
  • Patent number: 9082873
    Abstract: A structure and method for fabricating finFETs of varying effective device widths is disclosed. Groups of fins are shortened by a predetermined amount to achieve an effective device width that is equivalent to a real (non-integer) number of full-sized fins. The bottom of each group of fins is coplanar, while the tops of the fins from the different groups of fins may be at different levels.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: July 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tenko Yamashita, Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus Eduardus Standaert
  • Publication number: 20150171164
    Abstract: A method for fabricating a field effect transistor (FET) device includes forming a plurality of semiconductor fins on a substrate, removing a semiconductor fin of the plurality of semiconductor fins from a portion of the substrate, forming an isolation fin that includes a dielectric material on the substrate on the portion of the substrate, and forming a gate stack over the plurality of semiconductor fins and the isolation fin.
    Type: Application
    Filed: February 4, 2015
    Publication date: June 18, 2015
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 9059243
    Abstract: Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Pranita Kulkarni, Arvind Kumar, Shom Ponoth
  • Patent number: 9059209
    Abstract: A method includes providing a silicon-on-insulator wafer (e.g., an ETSOI wafer); forming a sacrificial gate structure that overlies a sacrificial insulator layer; forming raised source/drains adjacent to the sacrificial gate structure; depositing an oxide layer that covers the raised source/drains and that surrounds the sacrificial gate structure; and removing the sacrificial gate structure leaving an opening that extends to the sacrificial insulator layer. The method further includes widening the opening so as to expose some of the raised source/drains, removing the sacrificial insulator layer and forming a spacer layer on sidewalls of the opening, the spacer layer covering only an upper portion of the exposed raised source/drains, and depositing a layer of gate dielectric material within the opening. A gate conductor is deposited within the opening.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Balasubramanian S. Haran, Ali Khakifirooz
  • Publication number: 20150155353
    Abstract: After formation of a semiconductor device on a semiconductor-on-insulator (SOI) layer, a first dielectric layer is formed over a recessed top surface of a shallow trench isolation structure. A second dielectric layer that can be etched selective to the first dielectric layer is deposited over the first dielectric layer. A contact via hole for a device component located in or on a top semiconductor layer is formed by an etch. During the etch, the second dielectric layer is removed selective to the first dielectric layer, thereby limiting overetch into the first dielectric layer. Due to the etch selectivity, a sufficient amount of the first dielectric layer is present between the bottom of the contact via hole and a bottom semiconductor layer, thus providing electrical isolation for the ETSOI device from the bottom semiconductor layer.
    Type: Application
    Filed: February 11, 2015
    Publication date: June 4, 2015
    Inventors: Su Chen Fan, Balasubramanian S. Haran, David V. Horak
  • Publication number: 20150147853
    Abstract: An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 28, 2015
    Inventors: Kangguo Cheng, Bruce B. Doris, Balasubramanian S. Haran, Ali Khakifirooz
  • Publication number: 20150137147
    Abstract: An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 21, 2015
    Inventors: Kangguo Cheng, Bruce B. Doris, Balasubramanian S. Haran, Ali Khakifirooz
  • Publication number: 20150140744
    Abstract: An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 21, 2015
    Inventors: Kangguo Cheng, Bruce B. Doris, Balasubramanian S. Haran, Ali Khakifirooz
  • Publication number: 20150140743
    Abstract: An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 21, 2015
    Inventors: Kangguo Cheng, Bruce B. Doris, Balasubramanian S. Haran, Ali Khakifirooz
  • Patent number: 9024389
    Abstract: After formation of a semiconductor device on a semiconductor-on-insulator (SOI) layer, a first dielectric layer is formed over a recessed top surface of a shallow trench isolation structure. A second dielectric layer that can be etched selective to the first dielectric layer is deposited over the first dielectric layer. A contact via hole for a device component located in or on a top semiconductor layer is formed by an etch. During the etch, the second dielectric layer is removed selective to the first dielectric layer, thereby limiting overetch into the first dielectric layer. Due to the etch selectivity, a sufficient amount of the first dielectric layer is present between the bottom of the contact via hole and a bottom semiconductor layer, thus providing electrical isolation for the ETSOI device from the bottom semiconductor layer.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: May 5, 2015
    Assignee: International Business Machines Corporation
    Inventors: Su Chen Fan, Balasubramanian S. Haran, David V. Horak
  • Patent number: 9000522
    Abstract: An improved finFET and method of fabrication using a silicon-on-nothing process flow is disclosed. Nitride spacers protect the fin sides during formation of cavities underneath the fins for the silicon-on-nothing (SON) process. A flowable oxide fills the cavities to form an insulating dielectric layer under the fins.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus Eduardus Standaert, Tenko Yamashita
  • Patent number: 8999774
    Abstract: A process fabricates a fin field-effect-transistor by implanting a dopant into an exposed portion of a semiconductor substrate within a cavity. The cavity is formed in a dielectric layer on the semiconductor substrate. The cavity exposes the portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate. A height of the cavity defines a height of the epitaxially grown semiconductor.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita