Patents by Inventor Balasubramanian S. Haran

Balasubramanian S. Haran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8993382
    Abstract: A process fabricates a fin field-effect-transistor by forming a dummy fin structure on a semiconductor substrate. A dielectric layer is formed on the semiconductor substrate. The dielectric layer surrounds the dummy fin structure. The dummy fin structure is removed to form a cavity within the dielectric layer. The cavity exposes a portion of the semiconductor substrate thereby forming an exposed portion of the semiconductor substrate within the cavity. A dopant is implanted into the exposed portion of the semiconductor substrate within the cavity thereby creating a dopant implanted exposed portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8987070
    Abstract: A semiconductor substrate having an isolation region and method of forming the same. The method includes the steps of providing a substrate having a substrate layer, a buried oxide (BOX), a silicon on insulator (SOI) layer, a pad oxide layer, and a pad nitride layer, forming a shallow trench region, etching the pad oxide layer to form ears and etching the BOX layer to form undercuts, depositing a liner on the shallow trench region, depositing a soft mask over the surface of the shallow trench region, filling the shallow trench region, etching the soft mask so that it is recessed to the top of the BOX layer, etching the liner off certain regions, removing the soft mask, and filling and polishing the shallow trench region. The liner prevents shorting of the semiconductor device when the contacts are misaligned.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth
  • Patent number: 8987837
    Abstract: A non-planar semiconductor with enhanced strain includes a substrate and at least one semiconducting fin formed on a surface of the substrate. A gate stack is formed on a portion of the at least one semiconducting fin. A stress liner is formed over at least each of a plurality of sidewalls of the at least one semiconducting fin and the gate stack. The stress liner imparts stress to at least a source region, a drain region, and a channel region of the at least one semiconducting fin. The channel region is located in at least one semiconducting fin beneath the gate stack.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8987790
    Abstract: A method for fabricating a field effect transistor (FET) device includes forming a plurality of semiconductor fins on a substrate, removing a semiconductor fin of the plurality of semiconductor fins from a portion of the substrate, forming an isolation fin that includes a dielectric material on the substrate on the portion of the substrate, and forming a gate stack over the plurality of semiconductor fins and the isolation fin.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20150064874
    Abstract: FinFET structures with dielectric fins and methods of fabrication are disclosed. A gas cluster ion beam (GCIB) tool is used to apply an ion beam to exposed fins, which converts the fins from a semiconductor material such as silicon, to a dielectric such as silicon nitride or silicon oxide. Unlike some prior art techniques, where some fins are removed prior to fin merging, in embodiments of the present invention, fins are not removed. Instead, semiconductor (silicon) fins are converted to dielectric (nitride/oxide) fins where it is desirable to have isolation between groups of fins that comprise various finFET devices on an integrated circuit (IC).
    Type: Application
    Filed: October 30, 2014
    Publication date: March 5, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Shom Ponoth, Theodorus Eduardus Standaert, Tenko Yamashita
  • Publication number: 20150064855
    Abstract: An improved finFET and method of fabrication using a silicon-on-nothing process flow is disclosed. Nitride spacers protect the fin sides during formation of cavities underneath the fins for the silicon-on-nothing (SON) process. A flowable oxide fills the cavities to form an insulating dielectric layer under the fins.
    Type: Application
    Filed: October 31, 2014
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus Eduardus Standaert, Tenko Yamashita
  • Publication number: 20150053913
    Abstract: A mandrel having vertical planar surfaces is formed on a single crystalline semiconductor layer. An epitaxial semiconductor layer is formed on the single crystalline semiconductor layer by selective epitaxy. A first spacer is formed around an upper portion of the mandrel. The epitaxial semiconductor layer is vertically recessed employing the first spacers as an etch mask. A second spacer is formed on sidewalls of the first spacer and vertical portions of the epitaxial semiconductor layer. Horizontal bottom portions of the epitaxial semiconductor layer are etched from underneath the vertical portions of the epitaxial semiconductor layer to form a suspended ring-shaped semiconductor fin that is attached to the mandrel. A center portion of the mandrel is etched employing a patterned mask layer that covers two end portions of the mandrel. A suspended semiconductor fin is provided, which is suspended by a pair of support structures.
    Type: Application
    Filed: October 2, 2014
    Publication date: February 26, 2015
    Inventors: Kangguo Cheng, James J. Demarest, Balasubramanian S. Haran
  • Publication number: 20150054033
    Abstract: A finFET with self-aligned punchthrough stopper and methods of manufacture are disclosed. The method includes forming spacers on sidewalls of a gate structure and fin structures of a finFET device. The method further includes forming a punchthrough stopper on exposed sidewalls of the fin structures, below the spacers. The method further includes diffusing dopants from the punchthrough stopper into the fin structures. The method further includes forming source and drain regions adjacent to the gate structure and fin structures.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8946792
    Abstract: FinFET structures with dielectric fins and methods of fabrication are disclosed. A gas cluster ion beam (GCIB) tool is used to apply an ion beam to exposed fins, which converts the fins from a semiconductor material such as silicon, to a dielectric such as silicon nitride or silicon oxide. Unlike some prior art techniques, where some fins are removed prior to fin merging, in embodiments of the present invention, fins are not removed. Instead, semiconductor (silicon) fins are converted to dielectric (nitride/oxide) fins where it is desirable to have isolation between groups of fins that comprise various finFET devices on an integrated circuit (IC).
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Shom Ponoth, Theodorus Eduardus Standaert, Tenko Yamashita
  • Patent number: 8932918
    Abstract: A finFET with self-aligned punchthrough stopper and methods of manufacture are disclosed. The method includes forming spacers on sidewalls of a gate structure and fin structures of a finFET device. The method further includes forming a punchthrough stopper on exposed sidewalls of the fin structures, below the spacers. The method further includes diffusing dopants from the punchthrough stopper into the fin structures. The method further includes forming source and drain regions adjacent to the gate structure and fin structures.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 13, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8927387
    Abstract: A thin BOX ETSOI device with robust isolation and method of manufacturing. The method includes providing a wafer with at least a pad layer overlying a first semiconductor layer overlying an oxide layer overlying a second semiconductor layer, wherein the first semiconductor layer has a thickness of 10 nm or less. The process continues with etching a shallow trench into the wafer, extending partially into the second semiconductor layer and forming first spacers on the sidewalls of said shallow trench. After spacer formation, the process continues by etching an area directly below and between the first spacers, exposing the underside of the first spacers, forming second spacers covering all exposed portions of the first spacers, wherein the pad oxide layer is removed, and forming a gate structure over the first semiconductor wafer.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B Doris, Balasubramanian S Haran, Sanjay Mehta, Stefan Schmitz
  • Patent number: 8928090
    Abstract: A metallic top surface of a replacement gate structure is oxidized to convert a top portion of the replacement gate structure into a dielectric oxide. After removal of a planarization dielectric layer, selective epitaxy is performed to form a raised source region and a raised drain region that extends higher than the topmost surface of the replacement gate structure. A gate level dielectric layer including a first dielectric material is deposited and subsequently planarized employing the raised source and drain regions as stopping structures. A contact level dielectric layer including a second dielectric material is formed over the gate level dielectric layer, and contact via holes are formed employing an etch chemistry that etches the second dielectric material selective to the first dielectric material. Raised source and drain regions are recessed. Self-aligned contact structures can be formed by filling the contact via holes with a conductive material.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Soon-Cheon Seo, Balasubramanian S. Haran, Alexander Reznicek
  • Patent number: 8928067
    Abstract: A computer program storage product includes instructions for forming a fin field-effect-transistor. The instructions are configured to perform a method. The method includes implanting a dopant into an exposed portion of a semiconductor substrate within a cavity. The cavity is formed in a dielectric layer on the semiconductor substrate. The cavity exposes the portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate. A height of the cavity defines a height of the epitaxially grown semiconductor.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20140377927
    Abstract: A metallic top surface of a replacement gate structure is oxidized to convert a top portion of the replacement gate structure into a dielectric oxide. After removal of a planarization dielectric layer, selective epitaxy is performed to form a raised source region and a raised drain region that extends higher than the topmost surface of the replacement gate structure. A gate level dielectric layer including a first dielectric material is deposited and subsequently planarized employing the raised source and drain regions as stopping structures. A contact level dielectric layer including a second dielectric material is formed over the gate level dielectric layer, and contact via holes are formed employing an etch chemistry that etches the second dielectric material selective to the first dielectric material. Raised source and drain regions are recessed. Self-aligned contact structures can be formed by filling the contact via holes with a conductive material.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventors: Soon-Cheon Seo, Balasubramanian S. Haran, Alexander Reznicek
  • Patent number: 8889564
    Abstract: A mandrel having vertical planar surfaces is formed on a single crystalline semiconductor layer. An epitaxial semiconductor layer is formed on the single crystalline semiconductor layer by selective epitaxy. A first spacer is formed around an upper portion of the mandrel. The epitaxial semiconductor layer is vertically recessed employing the first spacers as an etch mask. A second spacer is formed on sidewalls of the first spacer and vertical portions of the epitaxial semiconductor layer. Horizontal bottom portions of the epitaxial semiconductor layer are etched from underneath the vertical portions of the epitaxial semiconductor layer to form a suspended ring-shaped semiconductor fin that is attached to the mandrel. A center portion of the mandrel is etched employing a patterned mask layer that covers two end portions of the mandrel. A suspended semiconductor fin is provided, which is suspended by a pair of support structures.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, James J. Demarest, Balasubramanian S. Haran
  • Publication number: 20140319611
    Abstract: A structure including a first plurality of fins and a second plurality of fins etched from a semiconductor substrate, and a fill material located above the semiconductor substrate and between the first plurality of fins and the second plurality of fins, the fill material does not contact either the first plurality of fins or the second plurality of fins.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Balasubramanian S. Haran, Sanjay Mehta, Shom Ponoth, Ravikumar Ramachandran, Stefan Schmitz, Theodorus E. Standaert
  • Patent number: 8859379
    Abstract: A non-planar semiconductor with enhanced strain includes a substrate and at least one semiconducting fin formed on a surface of the substrate. A gate stack is formed on a portion of the at least one semiconducting fin. A stress liner is formed over at least each of a plurality of sidewalls of the at least one semiconducting fin and the gate stack. The stress liner imparts stress to at least a source region, a drain region, and a channel region of the at least one semiconducting fin. The channel region is located in at least one semiconducting fin beneath the gate stack.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20140295647
    Abstract: A computer program storage product includes instructions for forming a fin field-effect-transistor. The instructions are configured to perform a method. The method includes implanting a dopant into an exposed portion of a semiconductor substrate within a cavity. The cavity is formed in a dielectric layer on the semiconductor substrate. The cavity exposes the portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate. A height of the cavity defines a height of the epitaxially grown semiconductor.
    Type: Application
    Filed: October 15, 2013
    Publication date: October 2, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo CHENG, Balasubramanian S. HARAN, Shom PONOTH, Theodorus E. STANDAERT, Tenko YAMASHITA
  • Publication number: 20140264598
    Abstract: A non-planar semiconductor with enhanced strain includes a substrate and at least one semiconducting fin formed on a surface of the substrate. A gate stack is formed on a portion of the at least one semiconducting fin. A stress liner is formed over at least each of a plurality of sidewalls of the at least one semiconducting fin and the gate stack. The stress liner imparts stress to at least a source region, a drain region, and a channel region of the at least one semiconducting fin. The channel region is located in at least one semiconducting fin beneath the gate stack.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Kangguo CHENG, Balasubramanian S. HARAN, Shom PONOTH, Theodorus E. STANDAERT, Tenko YAMASHITA
  • Publication number: 20140264496
    Abstract: A non-planar semiconductor with enhanced strain includes a substrate and at least one semiconducting fin formed on a surface of the substrate. A gate stack is formed on a portion of the at least one semiconducting fin. A stress liner is formed over at least each of a plurality of sidewalls of the at least one semiconducting fin and the gate stack. The stress liner imparts stress to at least a source region, a drain region, and a channel region of the at least one semiconducting fin. The channel region is located in at least one semiconducting fin beneath the gate stack.
    Type: Application
    Filed: September 19, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo CHENG, Balasubramanian S. HARAN, Shom PONOTH, Theodorus E. STANDAERT, Tenko YAMASHITA